Th
Pra ematic
ogrammers

Python Testin
with pytestg

Simple, Rapid,
Effective, and
Scalable

Brian Okken |
edited by Katharine Dvoralk

Early praise for Python Testing with pytest

I found Python Testing with pytest to be an eminently usable introductory guide-
book to the pytest testing framework. It is already paying dividends for me at my
company.
» Chris Shaver

VP of Product, Uprising Technology

Systematic software testing, especially in the Python community, is often either
completely overlooked or done in an ad hoc way. Many Python programmers are
completely unaware of the existence of pytest. Brian Okken takes the trouble to
show that software testing with pytest is easy, natural, and even exciting.
» Dmitry Zinoviev

Author of Data Science Essentials in Python

This book is the missing chapter absent from every comprehensive Python book.

» Frank Ruiz
Principal Site Reliability Engineer, Box, Inc.

We've left this page blank to
make the page numbers the
same in the electronic and
paper books.

We tried just leaving it out,
but then people wrote us to
ask about the missing pages.

Anyway, Eddy the Gerbil
wanted to say “hello.”

Python Testing with pytest

Simple, Rapid, Effective, and Scalable

Brian Okken

The Pragmatic Bookshelf

Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt

VP of Operations: Janet Furlow
Development Editor: Katharine Dvorak
Indexing: Potomac Indexing, LLC

Copy Editor: Nicole Abramowitz
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2017 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-240-4

Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—September 2017

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Acknowledgments

Sharing Fixtures Through conftest.py

Contents

ix

© 0 B W -

20
21

23
23
27
30
31
34
37
38
42
48
48

49
50
51
52
53
55
56

Contents ® vi

Specifying Fixtures with usefixtures 61
61
63
64
69
70

71
71
75
77
84
85
89
92
93
93

95
96
96
98
102
105
109
110
111

113
113
115
116
117
117
118
119
120
120
122
123

Al.
A2,
A3.

A5.

Using pytest with Other Tools

Contents ® vii

125
125
129
133
139
142
148
153
154

155
159
163
163
166
171
172

175
175
176
178
182

183
183
185
187

189

Acknowledgments

I first need to thank Michelle, my wife and best friend. I wish you could see
the room I get to write in. In place of a desk, I have an antique square oak
dining table to give me plenty of room to spread out papers. There’s a beautiful
glass-front bookcase with my retro space toys that we've collected over the
years, as well as technical books, circuit boards, and juggle balls. Vintage
aluminum paper storage bins are stacked on top with places for notes, cords,
and even leftover book-promotion rocket stickers. One wall is covered in some
velvet that we purchased years ago when a fabric store was going out of
business. The fabric is to quiet the echoes when I'm recording the podcasts.
I love writing here not just because it’s wonderful and reflects my personality,
but because it’'s a space that Michelle created with me and for me. She and
I have always been a team, and she has been incredibly supportive of my
crazy ideas to write a blog, start a podcast or two, and now, for the last year
or so, write this book. She has made sure I've had time and space for writing.
When I'm tired and don’t think I have the energy to write, she tells me to just
write for twenty minutes and see how I feel then, just like she did when she
helped me get through late nights of study in college. I really, really couldn’t
do this without her.

I also have two amazingly awesome, curious, and brilliant daughters, Gabriella
and Sophia, who are two of my biggest fans. Ella tells anyone talking about
programming that they should listen to my podcasts, and Phia sported a Test
& Code sticker on the backpack she took to second grade.

There are so many more people to thank.

My editor, Katharine Dvorak, helped me shape lots of random ideas and
topics into a cohesive progression, and is the reason why this is a book and
not a series of blog posts stapled together. I entered this project as a blogger,
and a little too attached to lots of headings, subheadings, and bullet points,
and Katie patiently guided me to be a better writer.

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Acknowledgments ® x

Thank you to Susannah Davidson Pfalzer, Andy Hunt, and the rest of The
Pragmatic Bookshelf for taking a chance on me.

The technical reviewers have kept me honest on pytest, but also on Python
style, and are the reason why the code examples are PEP 8-compliant. Thank
you to Oliver Bestwalter, Florian Bruhin, Floris Bruynooghe, Mark Goody,
Peter Hampton, Dave Hunt, Al Krinker, Lokesh Kumar Makani, Bruno Oliveira,
Ronny Pfannschmidt, Raphael Pierzina, Luciano Ramalho, Frank Ruiz, and
Dmitry Zinoviev. Many on that list are also pytest core developers and/or
maintainers of incredible pytest plugins.

I need to call out Luciano for a special thank you. Partway through the writing
of this book, the first four chapters were sent to a handful of reviewers.
Luciano was one of them, and his review was the hardest to read. I don’t think
I followed all of his advice, but because of his feedback, I re-examined and
rewrote much of the first three chapters and changed the way I thought about
the rest of the book.

Thank you to the entire pytest-dev team for creating such a cool testing tool.
Thank you to Oliver Bestwalter, Florian Bruhin, Floris Bruynooghe, Dave
Hunt, Holger Krekel, Bruno Oliveira, Ronny Pfannschmidt, Raphael Pierzina,
and many others for answering my pytest questions over the years.

Last but not least, I need to thank the people who have thanked me. Occasion-
ally people email to let me know how what I've written saved them time and
made their jobs easier. That's awesome, and pleases me to no end. Thank you.

Brian Okken
September 2017

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Preface

The use of Python is increasing not only in software development, but also
in fields such as data analysis, research science, test and measurement, and
other industries. The growth of Python in many critical fields also comes with
the desire to properly, effectively, and efficiently put software tests in place
to make sure the programs run correctly and produce the correct results. In
addition, more and more software projects are embracing continuous integra-
tion and including an automated testing phase, as release cycles are shorten-
ing and thorough manual testing of increasingly complex projects is just
infeasible. Teams need to be able to trust the tests being run by the continuous
integration servers to tell them if they can trust their software enough to
release it.

Enter pytest.

What Is pytest?

A robust Python testing tool, pytest can be used for all types and levels of
software testing. pytest can be used by development teams, QA teams, inde-
pendent testing groups, individuals practicing TDD, and open source
projects. In fact, projects all over the Internet have switched from unittest
or nose to pytest, including Mozilla and Dropbox. Why? Because pytest
offers powerful features such as ‘assert' rewriting, a third-party plugin
model, and a powerful yet simple fixture model that is unmatched in any
other testing framework.

pytest is a software test framework, which means pytest is a command-line
tool that automatically finds tests you've written, runs the tests, and reports
the results. It has a library of goodies that you can use in your tests to help
you test more effectively. It can be extended by writing plugins or installing
third-party plugins. It can be used to test Python distributions. And it
integrates easily with other tools like continuous integration and web
automation.

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Preface * xii

Here are a few of the reasons pytest stands out above many other test
frameworks:

e Simple tests are simple to write in pytest.

e Complex tests are still simple to write.

e Tests are easy to read.

e Tests are easy to read. (So important it’s listed twice.)
* You can get started in seconds.

* You use assert to fail a test, not things like self.assertEqual() or self.assertLessThan().
Just assert.

* You can use pytest to run tests written for unittest or nose.

pytest is being actively developed and maintained by a passionate and growing
community. It’s so extensible and flexible that it will easily fit into your work
flow. And because it’s installed separately from your Python version, you can
use the same latest version of pytest on legacy Python 2 (2.6 and above) and
Python 3 (3.3 and above).

Learn pytest While Testing an Example Application

How would you like to learn pytest by testing silly examples you’d never run
across in real life? Me neither. We're not going to do that in this book. Instead,
we're going to write tests against an example project that I hope has many of
the same traits of applications you'll be testing after you read this book.

The Tasks Project

The application we’ll look at is called Tasks. Tasks is a minimal task-tracking
application with a command-line user interface. It has enough in common
with many other types of applications that I hope you can easily see how the
testing concepts you learn while developing tests against Tasks are applicable
to your projects now and in the future.

While Tasks has a command-line interface (CLI), the CLI interacts with the rest
of the code through an application programming interface (API). The API is the
interface where we’ll direct most of our testing. The API interacts with a database
control layer, which interacts with a document database—either MongoDB or
TinyDB. The type of database is configured at database initialization.

Before we focus on the API, let’s look at tasks, the command-line tool that
represents the user interface for Tasks.

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Learn pytest While Testing an Example Application ® xiii

Here’s an example session:

$ tasks add 'do something' --owner Brian
tasks add 'do something else'
$ tasks list

ID owner done summary

s

1 Brian False do something

2 False do something else
$ tasks update 2 --owner Brian
$ tasks list

ID owner done summary
1 Brian False do something
2 Brian False do something else

$ tasks update 1 --done True
$ tasks list

ID owner done summary
1 Brian True do something
2 Brian False do something else

$ tasks delete 1
$ tasks list
ID owner done summary

2 Brian False do something else

$

This isn’t the most sophisticated task-management application, but it's compli-
cated enough to use it to explore testing.

Test Strategy

While pytest is useful for unit testing, integration testing, system or end-to-
end testing, and functional testing, the strategy for testing the Tasks project
focuses primarily on subcutaneous functional testing. Following are some
helpful definitions:

e Unit test: A test that checks a small bit of code, like a function or a class,
in isolation of the rest of the system. I consider the tests in Chapter 1,

Tasks data structure.

* Integration test: A test that checks a larger bit of the code, maybe several
classes, or a subsystem. Mostly it’s a label used for some test larger than
a unit test, but smaller than a system test.

e System test (end-to-end): A test that checks all of the system under test
in an environment as close to the end-user environment as possible.

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Preface ® xiv

e Functional test: A test that checks a single bit of functionality of a system.
A test that checks how well we add or delete or update a task item in
Tasks is a functional test.

e Subcutaneous test: A test that doesn’t run against the final end-user
interface, but against an interface just below the surface. Since most of
the tests in this book test against the API layer—not the CLI—they qualify
as subcutaneous tests.

How This Book Is Organized

In Chapter 1, Getting Started with pytest, on page 1, you'l install pytest and
get it ready to use. You'll then take one piece of the Tasks project—the data
structure representing a single task (a namedtuple called Task)|—and use it to
test examples. You'll learn how to run pytest with a handful of test files. You’'ll
look at many of the popular and hugely useful command-line options for
pytest, such as being able to re-run test failures, stop execution after the first

failure, control the stack trace and test run verbosity, and much more.

In Chapter 2, Writing Test Functions, on page 23, you'll install Tasks locally
using pip and look at how to structure tests within a Python project. You'll do
this so that you can get to writing tests against a real application. All the
examples in this chapter run tests against the installed application, including
writing to the database. The actual test functions are the focus of this chapter,
and you’ll learn how to use assert effectively in your tests. You’'ll also learn
about markers, a feature that allows you to mark many tests to be run at one
time, mark tests to be skipped, or tell pytest that we already know some tests
will fail. And I'll cover how to run just some of the tests, not just with markers,
but by structuring our test code into directories, modules, and classes, and
how to run these subsets of tests.

Not all of your test code goes into test functions. In Chapter 3, pytest Fixtures,

up and tear down code. Setting up system state (or subsystem or unit state)
is an important part of software testing. You’'ll explore this aspect of pytest
fixtures to help get the Tasks project’s database initialized and prefilled with
test data for some tests. Fixtures are an incredibly powerful part of pytest,
and you’ll learn how to use them effectively to further reduce test code
duplication and help make your test code incredibly readable and maintain-
able. pytest fixtures are also parametrizable, similar to test functions, and
you’ll use this feature to be able to run all of your tests against both TinyDB
and MongoDB, the database back ends supported by Tasks.

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

What You Need to Know ® xv

In Chapter 4, Builtin Fixtures, on page 71, you will look at some builtin fix-
tures provided out-of-the-box by pytest. You will learn how pytest builtin
fixtures can keep track of temporary directories and files for you, help you
test output from your code under test, use monkey patches, check for

warnings, and more.

In Chapter 5, Plugins, on page 95, you'll learn how to add command-line
optlonstopytest alterthepytestoutput and share pytest customizations,
including fixtures, with others through writing, packaging, and distributing
your own plugins. The plugin we develop in this chapter is used to make the
test failures we see while testing Tasks just a little bit nicer. You'll also look
at how to properly test your test plugins. How’s that for meta? And just in
case you're not inspired enough by this chapter to write some plugins of your
own, I've hand-picked a bunch of great plugins to show off what’s possible

in Appendix 3, Plugin Sampler Pack, on page 163.

learn how you can customize how pytest runs by default for your project with
configuration files. With a pytest.ini file, you can do things like store command-
line options so you don’t have to type them all the time, tell pytest to not look
into certain directories for test files, specify a minimum pytest version your
tests are written for, and more. These configuration elements can be put in
tox.ini or setup.cfg as well.

In the final chapter, Chapter 7, Using pytest with Other Tools, on page 125,
you'll look at how you can take the already powerful pytest and supercharge
your testing with complementary tools. You'll run the Tasks project on multiple
versions of Python with tox. You'll test the Tasks CLI while not having to run
the rest of the system with mock. You’ll use coverage.py to see if any of the
Tasks project source code isn’'t being tested. You'll use Jenkins to run test
suites and display results over time. And finally, you’ll see how pytest can be
used to run unittest tests, as well as share pytest style fixtures with unittest-
based tests.

What You Need to Know

Python
You don’t need to know a lot of Python. The examples don’t do anything
super weird or fancy.

pip
You should use pip to install pytest and pytest plugins. If you want a
refresher on pip, check out Appendix 2, pip, on page 159.

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Preface ® xvi

A command line
I wrote this book and captured the example output using bash on a Mac
laptop. However, the only commands I use in bash are cd to go to a specific
directory, and pytest, of course. Since cd exists in Windows cmd.exe and all
unix shells that I know of, all examples should be runnable on whatever
terminal-like application you choose to use.

That’s it, really. You don’t need to be a programming expert to start writing
automated software tests with pytest.

Example Code and Online Resources

The examples in this book were written using Python 3.6 and pytest 3.2.
pytest 3.2 supports Python 2.6, 2.7, and Python 3.3+.

The source code for the Tasks project, as well as for all of the tests shown in
this book, is available through a link' on the book’s web page at pragprog.com.’
You don’t need to download the source code to understand the test code; the
test code is presented in usable form in the examples. But to follow along
with the Tasks project, or to adapt the testing examples to test your own
project (more power to you!), you must go to the book’s web page to download
the Tasks project. Also available on the book’s web page is a link to post
errata® and a discussion forum.*

I've been programming for over twenty-five years, and nothing has made me
love writing test code as much as pytest. I hope you learn a lot from this book,
and I hope that you'll end up loving test code as much as I do.

https://pragprog.com/titles/bopytest/source_code

WD

https://pragprog.com/titles/bopytest/source_code
https://pragprog.com/titles/bopytest
https://pragprog.com/titles/bopytest/errata
https://forums.pragprog.com/forums/438
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

CHAPTER 1

Getting Started with pytest

This is a test:

ch1/test_one.py
def test passing():
assert (1, 2, 3) == (1, 2, 3)

This is what it looks like when it’s run:

$ cd /path/to/code/chl
$ pytest test_one.py

test session starts

collected 1 items

test one.py .

1 passed in 0.01 seconds

The dot after test one.py means that one test was run and it passed. If you need
more information, you can use -v or --verbose:

$ pytest -v test_one.py
test session starts

collected 1 items

test one.py::test passing PASSED

1 passed in 0.01 seconds

If you have a color terminal, the PASSED and bottom line are green. It’s nice.
This is a failing test:

ch1/test_two.py
def test failing():
assert (1, 2, 3) == (3, 2, 1)

The way pytest shows you test failures is one of the many reasons developers
love pytest. Let’s watch this fail:

http://media.pragprog.com/titles/bopytest/code/ch1/test_one.py
http://media.pragprog.com/titles/bopytest/code/ch1/test_two.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 1. Getting Started with pytest ¢ 2

$ pytest test_two.py

test session starts
collected 1 items

test two.py F

FAILURES
test failing

def test failing():
assert (1, 2, 3) == (3, 2, 1)
assert (1, 2, 3) == (3, 2, 1)
At index 0 diff: 1 !I=3
Use -v to get the full diff

mmm V

test two.py:2: AssertionError
1 failed in 0.04 seconds

Cool. The failing test, test failing, gets its own section to show us why it failed.
And pytest tells us exactly what the first failure is: index O is a mismatch.
Much of this is in red to make it really stand out (if you've got a color terminal).
That’s already a lot of information, but there’s a line that says Use -v to get the
full diff. Let’s do that:

$ pytest -v test_two.py
test session starts

collected 1 items
test two.py::test failing FAILED

FAILURES
test_failing

def test failing():

> assert (1, 2, 3) == (3, 2, 1)
E assert (1, 2, 3) == (3, 2, 1)
E At index 0 diff: 1 !=3

E Full diff:

E - (1, 2, 3)

E ?2 0 ~

E + (3, 2, 1)

E 20 ~

test two.py:2: AssertionError
1 failed in 0.04 seconds

Wow. pytest adds little carets (*) to show us exactly what’s different.

If you're already impressed with how easy it is to write, read, and run tests
with pytest, and how easy it is to read the output to see where the tests fail,
well, you ain’t seen nothing yet. There’s lots more where that came from. Stick
around and let me show you why I think pytest is the absolute best test
framework available.

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Getting pytest ® 3

In the rest of this chapter, you’'ll install pytest, look at different ways to run
it, and run through some of the most often used command-line options. In
future chapters, you’ll learn how to write test functions that maximize the
power of pytest, how to pull setup code into setup and teardown sections
called fixtures, and how to use fixtures and plugins to really supercharge
your software testing.

But first, I have an apology. I'm sorry that the test, assert (1, 2, 3) == (3, 2, 1), is
so boring. Snore. No one would write a test like that in real life. Software tests
are comprised of code that tests other software that you aren’t always positive
will work. And (1, 2, 3) == (1, 2, 3) will always work. That’s why we won’t use
overly silly tests like this in the rest of the book. We'll look at tests for a real
software project. We'll use an example project called Tasks that needs some
test code. Hopefully it’s simple enough to be easy to understand, but not so
simple as to be boring.

Another great use of software tests is to test your assumptions about how
the software under test works, which can include testing your understanding
of third-party modules and packages, and even builtin Python data structures.
The Tasks project uses a structure called Task, which is based on the named-
tuple factory method, which is part of the standard library. The Task structure
is used as a data structure to pass information between the Ul and the API.
For the rest of this chapter, I'll use Task to demonstrate running pytest and
using some frequently used command-line options.

Here’s Task:

from collections import namedtuple
Task = namedtuple('Task', ['summary', 'owner', ‘'done', 'id'])

The namedtuple() factory function has been around since Python 2.6, but I still
find that many Python developers don’t know how cool it is. At the very least,
using Task for test examples will be more interesting than (1, 2, 3) == (1, 2, 3)
or add(l, 2) == 3.

Before we jump into the examples, let’s take a step back and talk about how
to get pytest and install it.

Getting pytest

tation. But it's distributed through PyPI (the Python Package Index) at
https://pypi.python.org/pypi/pytest.

https://docs.pytest.org
https://pypi.python.org/pypi/pytest
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 1. Getting Started with pytest ® 4

Like other Python packages distributed through PyPI, use pip to install pytest
into the virtual environment you're using for testing:

$ pip3 install -U virtualenv
$ python3 -m virtualenv venv
$ source venv/bin/activate

$ pip install pytest

If you are not familiar with virtualenv or pip, I have got you covered. Check
out Appendix 1, Virtual Environments, on page 155 and Appendix 2, pip, on

The example for virtualenv and pip should work on many POSIX systems, such as Linux
and macOS, and many versions of Python, including Python 2.7.9 and later.

The source venv/bin/activate line won’t work for Windows, use venv\Scripts\activate.bat instead.
Do this:

C:\> pip3 install -U virtualenv
C:\> python3 -m virtualenv venv
C:\> venv\Scripts\activate.bat
(venv) C:\> pip install pytest

For Python 3.6 and above, you may get away with using venv instead of virtualenv, and
you don’t have to install it first. It’s included in Python 3.6 and above. However, I've
heard that some platforms still behave better with virtualenv.

"
Running pytest

$ pytest --help
usage: pytest [options] [file or dir] [file or dir] [...]

Given no arguments, pytest looks at your current directory and all subdirec-
tories for test files and runs the test code it finds. If you give pytest a filename,
a directory name, or a list of those, it looks there instead of the current
directory. Each directory listed on the command line is recursively traversed
to look for test code.

For example, let’s create a subdirectory called tasks, and start with this test file:

ch1/tasks/test_three.py
"""Test the Task data type."""

from collections import namedtuple

Task = namedtuple('Task', ['summary', 'owner', ‘'done', 'id'])
Task.__new_ . defaults__ = (None, None, False, None)

report erratum -« discuss

http://media.pragprog.com/titles/bopytest/code/ch1/tasks/test_three.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Running pytest ¢ 5

def test defaults():
"""Using no parameters should invoke defaults.
tl = Task()
t2 = Task(None, None, False, None)
assert tl == t2

def test member access():
"""Check .field functionality of namedtuple.
t = Task('buy milk', 'brian')

assert t.summary == 'buy milk'
assert t.owner == 'brian'
assert (t.done, t.id) == (False, None)

You can use _new_._ defaults_ to create Task objects without having to specify
all the fields. The test defaults() test is there to demonstrate and validate how
the defaults work.

The test_member_access() test is to demonstrate how to access members by name
and not by index, which is one of the main reasons to use namedtuples.

Let’s put a couple more tests into a second file to demonstrate the _asdict() and
_replace() functionality:

ch1/tasks/test_four.py
"""Test the Task data type."""

from collections import namedtuple

Task = namedtuple('Task', ['summary', 'owner', ‘'done', 'id'])
Task. new_ . defaults__ = (None, None, False, None)

def test asdict():
""" asdict() should return a dictionary."""
t task = Task('do something', 'okken', True, 21)
t dict = t task. asdict()
expected = {'summary': 'do something',
'owner': 'okken',
'done': True,
'id': 21}
assert t_dict == expected

def test replace():
"""replace() should change passed in fields.
t before = Task('finish book', 'brian', False)
t after = t before. replace(id=10, done=True)
t expected = Task('finish book', 'brian', True, 10)
assert t after == t_expected

To run pytest, you have the option to specify files and directories. If you don’t
specify any files or directories, pytest will look for tests in the current working

http://media.pragprog.com/titles/bopytest/code/ch1/tasks/test_four.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 1. Getting Started with pytest ¢ 6

directory and subdirectories. It looks for files starting with test_or ending with
_test. From the chl directory, if you run pytest with no commands, you’ll run
four files’ worth of tests:

$ cd /path/to/code/chl
$ pytest
test session starts

collected 6 items

test one.py .

test two.py F
tasks/test four.py ..
tasks/test three.py ..

FAILURES
test failing

def test failing():
assert (1, 2, 3) == (3, 2, 1)
assert (1, 2, 3) == (3, 2, 1)
At index 0 diff: 1 != 3
Use -v to get the full diff

mmm V

test two.py:2: AssertionError
==============] failed, 5 passed in 0.08 seconds ==============

To get just our new task tests to run, you can give pytest all the filenames
you want run, or the directory, or call pytest from the directory where our
tests are:

$ pytest tasks/test_three.py tasks/test_four.py
test session starts

collected 4 items

tasks/test three.py ..
tasks/test four.py ..

4 passed in 0.02 seconds
$ pytest tasks

test session starts

collected 4 items

tasks/test four.py ..
tasks/test three.py ..

4 passed in 0.03 seconds
$ cd /path/to/code/chl/tasks
$ pytest

test session starts
collected 4 items

test four.py ..
test three.py ..

4 passed in 0.02 seconds

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Running pytest ¢ 7

The part of pytest execution where pytest goes off and finds which tests to
run is called test discovery. pytest was able to find all the tests we wanted it
to run because we named them according to the pytest naming conventions.
Here’s a brief overview of the naming conventions to keep your test code dis-
coverable by pytest:

¢ Test files should be named test <something>.py or <something>_test.py.
¢ Test methods and functions should be named test <something>.
e Test classes should be named Test<Something>.

Since our test files and functions start with test , we're good. There are ways
to alter these discovery rules if you have a bunch of tests named differently.
I'll cover that in Chapter 6, Configuration, on page 113.

Let’s take a closer look at the output of running just one file:

$ cd /path/to/code/chl/tasks

$ pytest test_three.py

test session starts
platform darwin -- Python 3.6.2, pytest-3.2.1, py-1.4.34, pluggy-0.4.0
rootdir: /path/to/code/chl/tasks, inifile:

collected 2 items

test three.py ..

The output tells us quite a bit.

===== test session starts ====
pytest provides a nice delimiter for the start of the test session. A session
is one invocation of pytest, including all of the tests run on possibly
multiple directories. This definition of session becomes important when
I talk about session scope in relation to pytest fixtures in Specifying Fixture
Scope, on page 56.

platform darwin -- Python 3.6.2, pytest-3.2.1, py-1.4.34, pluggy-0.4.0
platform darwin is a Mac thing. This is different on a Windows machine. The
Python and pytest versions are listed, as well as the packages pytest
depends on. Both py and pluggy are packages developed by the pytest team
to help with the implementation of pytest.

rootdir: /path/to/code/ch1/tasks, inifile:
The rootdir is the topmost common directory to all of the directories being
searched for test code. The inifile (blank here) lists the configuration file being
used. Configuration files could be pytest.ini, tox.ini, or setup.cfg. You’ll look at
configuration files in more detail in Chapter 6, Configuration, on page 113.

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 1. Getting Started with pytest ¢ 8

collected 2 items

These are the two test functions in the file.

test three.py ..

The test_three.py shows the file being tested. There is one line for each test
file. The two dots denote that the tests passed—one dot for each test
function or method. Dots are only for passing tests. Failures, errors, skips,
xfails, and xpasses are denoted with F, E, s, x, and X, respectively. If you
want to see more than dots for passing tests, use the -v or --verbose option.

== 2 passed in 0.01 seconds ==

This refers to the number of passing tests and how long the entire test
session took. If non-passing tests were present, the number of each cate-
gory would be listed here as well.

The outcome of a test is the primary way the person running a test or looking
at the results understands what happened in the test run. In pytest, test
functions may have several different outcomes, not just pass or fail.

Here are the possible outcomes of a test function:

PASSED (.): The test ran successfully.
FAILED (F): The test did not run successfully (or XPASS + strict).

SKIPPED (s): The test was skipped. You can tell pytest to skip a test by
using either the @pytest.mark.skip() or pytest.mark.skipif() decorators, discussed
in Skipping Tests, on page 34.

xfail (x): The test was not supposed to pass, ran, and failed. You can tell
pytest that a test is expected to fail by using the @pytest.mark.xfail() decorator,
discussed in Marking Tests as Expecting to Fail, on page 37.

XPASS (X): The test was not supposed to pass, ran, and passed.

ERROR (E): An exception happened outside of the test function, in either
a fixture, discussed in Chapter 3, pytest Fixtures, on page 49, or in a hook

Running Only One Test

One of the first things you’ll want to do once you've started writing tests is to
run just one. Specify the file directly, and add a ::test_name, like this:

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Using Options ® 9

$ cd /path/to/code/chl
$ pytest -v tasks/test_four.py::test_asdict
test session starts

collected 3 items

tasks/test four.py::test asdict PASSED

1 passed in 0.01 seconds

Now, let’s take a look at some of the options.

Using Options

We've used the verbose option, -v or --verbose, a couple of times already, but
there are many more options worth knowing about. We're not going to use
all of the options in this book, but quite a few. You can see all of them with
pytest --help.

The following are a handful of options that are quite useful when starting out
with pytest. This is by no means a complete list, but these options in partic-
ular address some common early desires for controlling how pytest runs when
you're first getting started.

$ pytest --help
. subset of the list ...
-k EXPRESSION only run tests/classes which match the given
substring expression.
Example: -k 'test method or test other' matches
all test functions and classes whose name
contains 'test method' or 'test other'.

-m MARKEXPR only run tests matching given mark expression.
example: -m 'markl and not mark2'.

-x, --exitfirst exit instantly on first error or failed test.

--maxfail=num exit after first num failures or errors.

- -capture=method per-test capturing method: one of fd|sys|no.

-S shortcut for --capture=no.

--1f, --last-failed rerun only the tests that failed last time
(or all if none failed)

--ff, --failed-first run all tests but run the last failures first.

-v, --verbose increase verbosity.

-q, --quiet decrease verbosity.

-1, --showlocals show locals in tracebacks (disabled by default).
--tb=style traceback print mode (auto/long/short/line/native/no).
--durations=N show N slowest setup/test durations (N=0 for all).
--collect-only only collect tests, don't execute them.

--version display pytest lib version and import information.

-h, --help show help message and configuration info

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 1. Getting Started with pytest ® 10

—collect-only

The --collect-only option shows you which tests will be run with the given options
and configuration. It’s convenient to show this option first so that the output
can be used as a reference for the rest of the examples. If you start in the chl
directory, you should see all of the test functions you've looked at so far in
this chapter:

$ cd /path/to/code/chl
$ pytest --collect-only
test session starts

collected 6 items

<Module 'test one.py'>
<Function 'test passing'>

<Module 'test two.py'>
<Function 'test failing'>

<Module 'tasks/test four.py's>
<Function 'test_asdict'>
<Function 'test replace'>

<Module 'tasks/test three.py'>
<Function 'test defaults'>
<Function 'test member access'>

============== N0 tests ran in 0_93 seconds LSS

The --collect-only option is helpful to check if other options that select tests are correct
before running the tests. We’ll use it again with -k to show how that works.

-k EXPRESSION

The -k option lets you use an expression to find what test functions to run.
Pretty powerful. It can be used as a shortcut to running an individual test if
its name is unique, or running a set of tests that have a common prefix or
suffix in their names. Let’s say you want to run the test_asdict() and test_defaults()
tests. You can test out the filter with --collect-only:

$ cd /path/to/code/chl
$ pytest -k "asdict or defaults" --collect-only
test session starts

collected 6 items

<Module 'tasks/test_four.py'>
<Function 'test asdict'>

<Module 'tasks/test three.py'>
<Function 'test defaults'>

4 tests deselected
eSS 4 deselected in 0_03 seconds S

Yep. That looks like what we want. Now you can run them by removing the
--collect-only:

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Using Options ® 11

$ pytest -k "asdict or defaults"
test session starts

collected 6 items

tasks/test four.py .
tasks/test three.py .

4 tests deselected
========= 2 passed, 4 deselected in 0.03 seconds ==========

Hmm. Just dots. So they passed. But were they the right tests? One way to
find out is to use -v or --verbose:

$ pytest -v -k "asdict or defaults"
test session starts

collected 6 items

tasks/test four.py::test asdict PASSED
tasks/test three.py::test defaults PASSED

4 tests deselected
========= 2 passed, 4 deselected in 0.02 seconds ==========

Yep. They were the correct tests.

-m MARKEXPR

Markers are one of the best ways to mark a subset of your test functions so
that they can be run together. As an example, one way to run test replace() and
test_ member_access(), even though they are in separate files, is to mark them.

You can use any marker name. Let’s say you want to use run_these _please. You’d
mark a test using the decorator @pytest.mark.run_these_please, like so:

import pytest

@pytest.mark.run these please
def test member access():

Then you’d do the same for test_replace(). You can then run all the tests with
the same marker with pytest -m run_these please:
$ cd /path/to/code/chl/tasks

$ pytest -v -m run_these_please
test session starts

collected 4 items

test four.py::test replace PASSED
test three.py::test member access PASSED

2 tests deselected
========= 2 passed, 2 deselected in 0.02 seconds =========

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 1. Getting Started with pytest ® 12

The marker expression doesn’t have to be a single marker. You can say things
like -m "markl and mark2" for tests with both markers, -m "markl and not mark2" for
tests that have mark1 but not mark2, -m "markl or mark2" for tests with either,
and so on. I'll discuss markers more completely in Marking Test Functions,
onpage Sl e

-Xx, —exitfirst

Normal pytest behavior is to run every test it finds. If a test function
encounters a failing assert or an exception, the execution for that test stops
there and the test fails. And then pytest runs the next test. Most of the time,
this is what you want. However, especially when debugging a problem, stop-
ping the entire test session immediately when a test fails is the right thing to
do. That's what the -x option does.

Let’s try it on the six tests we have so far:

$ cd /path/to/code/chl
$ pytest -x
test session starts

collected 6 items

test one.py .
test two.py F

FAILURES
test failing

def test failing():

> assert (1, 2, 3) == (3, 2, 1)
E assert (1, 2, 3) == (3, 2, 1)
E At index 0 diff: 1 != 3

E Use -v to get the full diff

test two.py:2: AssertionError

Near the top of the output you see that all six tests (or “items”) were collected,
and in the bottom line you see that one test failed and one passed, and pytest
displays the “Interrupted” line to tell us that it stopped.

Without -x, all six tests would have run. Let’s run it again without the -x. Let’s
also use --tb=no to turn off the stack trace, since you've already seen it and
don’t need to see it again:

$ cd /path/to/code/chl
$ pytest --tb=no
test session starts

collected 6 items

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Using Options ® 13

test one.py .

test two.py F
tasks/test four.py ..
tasks/test three.py ..

=========== 1 failed, 5 passed in 0.09 seconds ============

This demonstrates that without the -x, pytest notes failure in test two.py and
continues on with further testing.

—-maxfail=num

The -x option stops after one test failure. If you want to let some failures
happen, but not a ton, use the --maxfail option to specify how many failures
are okay with you.

It's hard to really show this with only one failing test in our system so far,
but let’s take a look anyway. Since there is only one failure, if we set --maxfail=2,
all of the tests should run, and --maxfail=1 should act just like -x:

$ cd /path/to/code/chl

$ pytest --maxfail=2 --tb=no
test session starts

collected 6 items

test one.py .
test two.py F
tasks/test four.py ..
tasks/test three.py ..

===========] failed, 5 passed in 0.08 seconds ============
$ pytest --maxfail=1l --tb=no
test session starts

collected 6 items

test one.py .
test two.py F

Again, we used --tb=no to turn off the traceback.

-s and —capture=method

The -s flag allows print statements—or really any output that normally would
be printed to stdout—to actually be printed to stdout while the tests are running.
It is a shortcut for --capture=no. This makes sense once you understand that
normally the output is captured on all tests. Failing tests will have the output
reported after the test runs on the assumption that the output will help you
understand what went wrong. The -s or --capture=no option turns off output

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 1. Getting Started with pytest ® 14

capture. When developing tests, I find it useful to add several print() statements
so that I can watch the flow of the test.

Another option that may help you to not need print statements in your code
is -I/--showlocals, which prints out the local variables in a test if the test fails.

Other options for capture method are --capture=fd and --capture=sys. The --capture=sys
option replaces sys.stdout/stderr with in-mem files. The --capture=fd option points
file descriptors 1 and 2 to a temp file.

I'm including descriptions of sys and fd for completeness. But to be honest,
I've never needed or used either. I frequently use -s. And to fully describe how
-s works, I needed to touch on capture methods.

We don’t have any print statements in our tests yet; a demo would be point-
less. However, I encourage you to play with this a bit so you see it in action.

-If, -last-failed

When one or more tests fails, having a convenient way to run just the failing
tests is helpful for debugging. Just use --If and you're ready to debug:

$ cd /path/to/code/chl
$ pytest --1f

test session starts
run-last-failure: rerun last 1 failures
collected 6 items

test two.py F

FAILURES
test failing

def test failing():
assert (1, 2, 3) == (3, 2, 1)
assert (1, 2, 3) == (3, 2, 1)
At index 0 diff: 1 != 3
Use -v to get the full diff

mmm V

test two.py:2: AssertionError
5 tests deselected
========= 1 failed, 5 deselected in 0.08 seconds ==========

This is great if you've been using a -tb option that hides some information
and you want to re-run the failures with a different traceback option.

—ff, —failed-first

The --ff/--failed-first option will do the same as --last-failed, and then run the rest
of the tests that passed last time:

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Using Options ® 15

$ cd /path/to/code/chl

$ pytest --ff --tb=no

test session starts
run-last-failure: rerun last 1 failures first
collected 6 items

test two.py F

test one.py .
tasks/test four.py ..
tasks/test three.py ..

===========] failed, 5 passed in 0.09 seconds ============

Usually, test failing() from test_two.py is run after test\ one.py. However, because
test failing() failed last time, --ff causes it to be run first.

-v, -verbose

The -v/--verbose option reports more information than without it. The most
obvious difference is that each test gets its own line, and the name of the test
and the outcome are spelled out instead of indicated with just a dot.

We've used it quite a bit already, but let’s run it again for fun in conjunction
with --ff and --tb=no:

$ cd /path/to/code/chl

$ pytest -v --ff --tb=no

test session starts
run-last-failure: rerun last 1 failures first
collected 6 items

test two.py::test failing FAILED

test one.py::test passing PASSED

tasks/test four.py::test asdict PASSED
tasks/test four.py::test replace PASSED
tasks/test three.py::test defaults PASSED
tasks/test three.py::test member access PASSED

=========== 1 failed, 5 passed in 0.07 seconds ============

With color terminals, you’d see red FAILED and green PASSED outcomes in the
report as well.

-g, —quiet
The -q/--quiet option is the opposite of -v/--verbose; it decreases the information

reported. I like to use it in conjunction with --tb=line, which reports just the
failing line of any failing tests.

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 1. Getting Started with pytest ® 16

Let’s try -q by itself:

$ cd /path/to/code/chl

$ pytest -q

F.o...

FAILURES
test failing

def test failing():

> assert (1, 2, 3) == (3, 2, 1)
E assert (1, 2, 3) == (3, 2, 1)
E At index 0 diff: 1 '= 3

E Full diff:

E - (1, 2, 3)

E 20 ~

E + (3, 2, 1)

E 20 ~

test two.py:2: AssertionError
1 failed, 5 passed in 0.08 seconds

The -q option makes the output pretty terse, but it's usually enough. We’ll
use the -q option frequently in the rest of the book (as well as --tb=no) to limit
the output to what we are specifically trying to understand at the time.

-1, -showlocals

If you use the -I/--showlocals option, local variables and their values are displayed
with tracebacks for failing tests.

So far, we don’t have any failing tests that have local variables. If I take the
test_replace() test and change

t expected = Task('finish book', 'brian', True, 10)
to
t expected = Task('finish book', 'brian', True, 11)

the 10 and 11 should cause a failure. Any change to the expected value will
cause a failure. But this is enough to demonstrate the command-line option
--|/--showlocals:

$ cd /path/to/code/chl
$ pytest -1 tasks

test session starts
collected 4 items

tasks/test four.py .F
tasks/test three.py ..

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Using Options ® 17

FAILURES
test replace

def test replace():

t before = Task('finish book', 'brian', False)
t after = t before. replace(id=10, done=True)
t_expected = Task('finish book', ‘'brian', True, 11)
> assert t after == t expected
E AssertionError: assert Task(summary=...e=True, id=10) == Task(
summary="'...e=True, id=11)
E At index 3 diff: 10 != 11
E Use -v to get the full diff
t_after = Task(summary='finish book', owner='brian', done=True, id=10)
t before = Task(summary='finish book', owner='brian', done=False, id=None)

t expected = Task(summary='finish book', owner='brian', done=True, id=11)

tasks/test four.py:20: AssertionError
=========== 1 failed, 3 passed in 0.08 seconds ============

The local variables t after, t before, and t expected are shown after the code
snippet, with the value they contained at the time of the failed assert.

—tb=style

The --tb=style option modifies the way tracebacks for failures are output. When
a test fails, pytest lists the failures and what's called a traceback, which shows
you the exact line where the failure occurred. Although tracebacks are helpful
most of time, there may be times when they get annoying. That's where the
--tb=style option comes in handy. The styles I find useful are short, line, and no.
short prints just the assert line and the E evaluated line with no context; line
keeps the failure to one line; no removes the traceback entirely.

Let’s leave the modification to test replace() to make it fail and run it with differ-
ent traceback styles.

--tb=no removes the traceback entirely:

$ cd /path/to/code/chl
$ pytest --tb=no tasks
test session starts

collected 4 items

tasks/test four.py .F
tasks/test three.py ..

===========] failed, 3 passed in 0.04 seconds ============

-tb=line in many cases is enough to tell what’s wrong. If you have a ton of
failing tests, this option can help to show a pattern in the failures:

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 1. Getting Started with pytest ® 18

$ pytest --tb=line tasks
test session starts

collected 4 items

tasks/test four.py .F
tasks/test three.py ..

FAILURES
/path/to/code/chl/tasks/test four.py:20:

AssertionError: assert Task(summary=...e=True, id=10) == Task(
summary="'...e=True, id=11)

===========] failed, 3 passed in 0.05 seconds ============

The next step up in verbose tracebacks is --tb=short:

$ pytest --tb=short tasks
test session starts

collected 4 items

tasks/test four.py .F
tasks/test three.py ..

FAILURES
test replace
tasks/test four.py:20: in test replace

assert t after == t expected
E AssertionError: assert Task(summary=...e=True, id=10) == Task(
summary="'...e=True, id=11)
E At index 3 diff: 10 != 11
E Use -v to get the full diff

===========] failed, 3 passed in 0.04 seconds ============
That’s definitely enough to tell you what’s going on.
There are three remaining traceback choices that we haven't covered so far.

pytest --tb=long will show you the most exhaustive, informative traceback possi-
ble. pytest --tb=auto will show you the long version for the first and last trace-
backs, if you have multiple failures. This is the default behavior. pytest --tb=native
will show you the standard library traceback without any extra information.

—durations=N

The --durations=N option is incredibly helpful when you're trying to speed up
your test suite. It doesn’t change how your tests are run; it reports the slowest
N number of tests/setups/teardowns after the tests run. If you pass in
--durations=0, it reports everything in order of slowest to fastest.

None of our tests are long, so I'll add a time.sleep(0.1) to one of the tests. Guess
which one:

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Using Options ® 19

$ cd /path/to/code/chl
$ pytest --durations=3 tasks
test session starts

collected 4 items

tasks/test four.py ..
tasks/test three.py ..

============== slowest 3 test durations ===============
0.10s call tasks/test four.py::test replace

0.00s setup tasks/test three.py::test defaults

0.00s teardown tasks/test three.py::test member access
============== 4 passed in 0.13 seconds ===============

The slow test with the extra sleep shows up right away with the label call,
followed by setup and teardown. Every test essentially has three phases: call,
setup, and teardown. Setup and teardown are also called fixtures and are a
chance for you to add code to get data or the software system under test into
a precondition state before the test runs, as well as clean up afterwards if
necessary. I cover fixtures in depth in Chapter 3, pytest Fixtures, on page 49.

—-version

The --version option shows the version of pytest and the directory where it's
installed:

$ pytest --version
This is pytest version 3.0.7, imported from
/path/to/venv/lib/python3.5/site-packages/pytest.py

Since we installed pytest into a virtual environment, pytest will be located in
the site-packages directory of that virtual environment.

-h, -help

The -h/--help option is quite helpful, even after you get used to pytest. Not only
does it show you how to use stock pytest, but it also expands as you install
plugins to show options and configuration variables added by plugins.

The -h option shows:
® usage: pytest [options] [file_or_dir] [file_or_dir] [...]

¢ Command-line options and a short description, including options added
via plugins

» Alist of options available to ini style configuration files, which I'll discuss
more in Chapter 6, Configuration, on page 113

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 1. Getting Started with pytest ® 20

e A list of environmental variables that can affect pytest behavior (also
discussed in Chapter 6, Configuration, on page 113)

e A reminder that pytest --markers can be used to see available markers,
discussed in Chapter 2, Writing Test Functions, on page 23

¢ A reminder that pytest --fixtures can be used to see available fixtures, dis-
cussed in Chapter 3, pytest Fixtures, on page 49

The last bit of information the help text displays is this note:
(shown according to specified file or dir or current dir if not specified)

This note is important because the options, markers, and fixtures can change
based on which directory or test file you're running. This is because along
the path to a specified file or directory, pytest may find conftest.py files that can
include hook functions that create new options, fixture definitions, and
marker definitions.

The ability to customize the behavior of pytest in conftest.py files and test files
allows customized behavior local to a project or even a subset of the tests for
a project. You'll learn about conftest.py and ini files such as pytest.ini in Chapter
6, Configuration, on page 113.

Exercises

1. Create a new virtual environment using python -m virtualenv or python -m venv.
Even if you know you don’t need virtual environments for the project
you're working on, humor me and learn enough about them to create one
for trying out things in this book. I resisted using them for a very long
time, and now I always use them. Read Appendix 1, Virtual Environments,

2. Practice activating and deactivating your virtual environment a few times.

e ¢ source venv/bin/activate
e § deactivate

On Windows:

e C:\Users\okken\sandbox>venv\scripts\activate.bat
e C:\Users\okken\sandbox>deactivate

3. Install pytest in your new virtual environment. See Appendix 2, pip, on

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

What's Next ® 21

pytest installed, you'll need to install it into the virtual environment you
just created.

4. Create a few test files. You can use the ones we used in this chapter or
make up your own. Practice running pytest against these files.

5. Change the assert statements. Don’t just use assert something == something_else;
try things like:

e assert1in[2, 3, 4]
e asserta<b
e assert 'fizz' not in 'fizzbuzz'

What's Next

In this chapter, we looked at where to get pytest and the various ways to run
it. However, we didn’t discuss what goes into test functions. In the next
chapter, we'll look at writing test functions, parametrizing them so they get
called with different data, and grouping tests into classes, modules, and
packages.

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

CHAPTER 2

Writing Test Functions

In the last chapter, you got pytest up and running. You saw how to run it
against files and directories and how many of the options worked. In this
chapter, you'll learn how to write test functions in the context of testing a
Python package. If you're using pytest to test something other than a Python
package, most of this chapter still applies.

We're going to write tests for the Tasks package. Before we do that, I'll talk
about the structure of a distributable Python package and the tests for it,
and how to get the tests able to see the package under test. Then I'll show
you how to use assert in tests, how tests handle unexpected exceptions, and
testing for expected exceptions.

Eventually, we’ll have a lot of tests. Therefore, you'll learn how to organize
tests into classes, modules, and directories. I'll then show you how to use
markers to mark which tests you want to run and discuss how builtin markers
can help you skip tests and mark tests as expecting to fail. Finally, I'll cover
parametrizing tests, which allows tests to get called with different data.

Testing a Package

We'll use the sample project, Tasks, as discussed in The Tasks Project, on

Python package that includes a command-line tool of the same name, tasks.

Appendix 4, Packaging and Distributing Python Projects, on page 175 includes
an explanation of how to distribute your projects locally within a small team
or globally through PyPI, so I won't go into detail of how to do that here;
however, let’s take a quick look at what’s in the Tasks project and how the

different files fit into the story of testing this project.

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 2. Writing Test Functions ¢ 24

Following is the file structure for the Tasks project:

tasks proj/
—— CHANGELOG. rst
—— LICENSE
—— MANIFEST.in
—— README.rst
—— setup.py
—— src
L— tasks
F— _init__.py
— api.py
cli.py
config.py
tasksdb _pymongo.py
tasksdb_tinydb.py

[TTT

—— tests

— conftest.py
— pytest.ini

— func
|
L

F— _init__.py

— test_task.py
_lll

I included the complete listing of the project (with the exception of the full
list of test files) to point out how the tests fit in with the rest of the project,
and to point out a few files that are of key importance to testing, namely con-
ftest.py, pytest.ini, the various _init_.py files, and setup.py.

All of the tests are kept in tests and separate from the package source files in
src. This isn’t a requirement of pytest, but it's a best practice.

All of the top-level files, CHANGELOG.rst, LICENSE, README.rst, MANIFEST.in, and setup.py,
are discussed in more detail in Appendix 4, Packaging and Distributing Python

out of a package, it’s also crucial for being able to install a package locally so
that the package is available for import.

Functional and unit tests are separated into their own directories. This is an
arbitrary decision and not required. However, organizing test files into multiple
directories allows you to easily run a subset of tests. I like to keep functional
and unit tests separate because functional tests should only break if we are
intentionally changing functionality of the system, whereas unit tests could
break during a refactoring or an implementation change.

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Testing a Package ® 25

The project contains two types of _init_.py files: those found under the src/
directory and those found under tests/. The src/tasks/_init_.py file tells Python
that the directory is a package. It also acts as the main interface to the
package when someone uses import tasks. It contains code to import specific
functions from api.py so that cli.py and our test files can access package func-
tionality like tasks.add() instead of having to do tasks.api.add().

The tests/func/_init__.py and tests/unit/_init_.py files are empty. They tell pytest to
go up one directory to look for the root of the test directory and to look for
the pytest.ini file.

The pytest.ini file is optional. It contains project-wide pytest configuration. There
should be at most only one of these in your project. It can contain directives
that change the behavior of pytest, such as setting up a list of options that
will always be used. You'll learn all about pytest.ini in Chapter 6, Configuration,
onpage 118, et

The conftest.py file is also optional. It is considered by pytest as a “local plugin”
and can contain hook functions and fixtures. Hook functions are a way to
insert code into part of the pytest execution process to alter how pytest works.
Fixtures are setup and teardown functions that run before and after test
functions, and can be used to represent resources and data used by the
tests. (Fixtures are discussed in Chapter 3, pytest Fixtures, on page 49 and

by tests in multiple subdirectories should be contained in tests/conftest.py. You
can have multiple conftest.py files; for example, you can have one at tests and
one for each subdirectory under tests.

If you haven’t already done so, you can download a copy of the source code
for this project on the book’s website.' Alternatively, you can work on your
own project with a similar structure.

Installing a Package Locally

The test file, tests/test_task.py, contains the tests we worked on in Running pytest,

something that makes more sense for what it’s testing and copied everything
into one file. I also removed the definition of the Task data structure, because
that really belongs in api.py.

1. https://pragprog.com/titles/bopytest/source_code

https://pragprog.com/titles/bopytest/source_code
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 2. Writing Test Functions ¢ 26

Here is test _task.py:

ch2/tasks_proj/tests/unit/test_task.py
"""Test the Task data type."""
from tasks import Task

def test asdict():
""" asdict() should return a dictionary.
t task = Task('do something', 'okken', True, 21)
t dict = t _task. asdict()

expected = {'summary': 'do something',
'owner': 'okken',
"done': True,
'id': 21}

assert t dict == expected

def test replace():
"""replace() should change passed in fields.
t before = Task('finish book', 'brian', False)
t after = t _before. replace(id=10, done=True)
t expected = Task('finish book', 'brian', True, 10)
assert t after == t expected

def test defaults():
"""Using no parameters should invoke defaults."""
tl = Task()
t2 = Task(None, None, False, None)
assert tl == t2

def test member access():
"""Check .field functionality of namedtuple."""
t = Task('buy milk', 'brian')

assert t.summary == 'buy milk'
assert t.owner == 'brian'
assert (t.done, t.id) == (False, None)

The test _task.py file has this import statement:

from tasks import Task

The best way to allow the tests to be able to import tasks or from tasks import something
is to install tasks locally using pip. This is possible because there’s a setup.py
file present to direct pip.

Install tasks either by running pip install . or pip install -e . from the tasks_proj direc-
tory. Or you can run pip install -e tasks_proj from one directory up:

$ cd /path/to/code

$ pip install ./tasks_proj/

$ pip install --no-cache-dir ./tasks_proj/
Processing ./tasks proj

http://media.pragprog.com/titles/bopytest/code/ch2/tasks_proj/tests/unit/test_task.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Using assert Statements ® 27

Collecting click (from tasks==0.1.0)
Downloading click-6.7-py2.py3-none-any.whl (71kB)

Collecting tinydb (from tasks==0.1.0)
Downloading tinydb-3.4.0.tar.gz
Collecting six (from tasks==0.1.0)
Downloading six-1.10.0-py2.py3-none-any.whl
Installing collected packages: click, tinydb, six, tasks
Running setup.py install for tinydb ... done
Running setup.py install for tasks ... done
Successfully installed click-6.7 six-1.10.0 tasks-0.1.0 tinydb-3.4.0

If you only want to run tests against tasks, this command is fine. If you want
to be able to modify the source code while tasks is installed, you need to install
it with the -e option (for “editable”):

$ pip install -e ./tasks_proj/
Obtaining file:///path/to/code/tasks proj
Requirement already satisfied: click in
/path/to/venv/lib/python3.6/site-packages (from tasks==0.1.0)
Requirement already satisfied: tinydb in
/path/to/venv/lib/python3.6/site-packages (from tasks==0.1.0)
Requirement already satisfied: six in
/path/to/venv/lib/python3.6/site-packages (from tasks==0.1.0)
Installing collected packages: tasks
Found existing installation: tasks 0.1.0
Uninstalling tasks-0.1.0:
Successfully uninstalled tasks-0.1.0
Running setup.py develop for tasks
Successfully installed tasks

Now let’s try running tests:

$ cd /path/to/code/ch2/tasks_proj/tests/unit
$ pytest test_task.py
test session starts

collected 4 items

test task.py

4 passed in 0.01 seconds

The import worked! The rest of our tests can now safely use import tasks. Now
let’'s write some tests.

Using assert Statements

When you write test functions, the normal Python assert statement is your
primary tool to communicate test failure. The simplicity of this within pytest
is brilliant. It's what drives a lot of developers to use pytest over other
frameworks.

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 2. Writing Test Functions ¢ 28

If you've used any other testing framework, you've probably seen various assert
helper functions. For example, the following is a list of a few of the assert forms
and assert helper functions:

pytest unittest
assert something assertTrue(something)
asserta == assertEqual(a, b)
asserta<=b assertLessEqual(a, b)

With pytest, you can use assert <expression> with any expression. If the expres-
sion would evaluate to False if converted to a bool, the test would fail.

pytest includes a feature called assert rewriting that intercepts assert calls and
replaces them with something that can tell you more about why your asser-
tions failed. Let’s see how helpful this rewriting is by looking at a few assertion
failures:

ch2/tasks_proj/tests/unit/test_task_fail.py
"""Use the Task type to show test failures."""
from tasks import Task

def test task equality():
"""Different tasks should not be equal."""
tl = Task('sit there', 'brian')
t2 = Task('do something', 'okken')
assert tl == t2

def test dict equality():
"""Different tasks compared as dicts should not be equal."""
tl dict = Task('make sandwich', 'okken'). asdict()
t2 dict = Task('make sandwich', 'okkem'). asdict()
assert tl dict == t2_dict

All of these tests fail, but what's interesting is the traceback information:

$ cd /path/to/code/ch2/tasks_proj/tests/unit
$ pytest test_task_fail.py
test session starts

collected 2 items
test task fail.py FF

FAILURES
test_task _equality

def test task equality():
tl = Task('sit there', 'brian')
t2 = Task('do something', 'okken')
> assert tl == t2

http://media.pragprog.com/titles/bopytest/code/ch2/tasks_proj/tests/unit/test_task_fail.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Using assert Statements ® 29

E AssertionError: assert Task(summary=...alse, id=None) ==
Task(summary="'...alse, id=None)

E At index 0 diff: 'sit there' != 'do something'

E Use -v to get the full diff

test task fail.py:6: AssertionError
test_dict_equality

def test dict equality():

tl dict = Task('make sandwich', 'okken'). asdict()
t2 dict = Task('make sandwich', 'okkem'). asdict()
> assert tl dict == t2 dict
E AssertionError: assert OrderedDict([...('id', None)]) ==
OrderedDict([(...('id', None)l)
E Omitting 3 identical items, use -v to show
E Differing items:
E {'owner': 'okken'} !'= {'owner': 'okkem'}
E Use -v to get the full diff

test task fail.py:11: AssertionError
2 failed in 0.06 seconds

Wow. That’s a lot of information. For each failing test, the exact line of failure
is shown with a > pointing to the failure. The E lines show you extra informa-
tion about the assert failure to help you figure out what went wrong.

I intentionally put two mismatches in test task equality(), but only the first was
shown in the previous code. Let’s try it again with the -v flag, as suggested in
the error message:

$ pytest -v test_task_fail.py::test_task_equality
test session starts

collected 3 items
test_task fail.py::test task_equality FAILED

FAILURES
test task _equality

def test task equality():
tl = Task('sit there', 'brian')
t2 = Task('do something', 'okken')

> assert tl == t2

E AssertionError: assert Task(summary=...alse, id=None) ==
Task(summary="'...alse, id=None)

E At index O diff: 'sit there' != 'do something'

E Full diff:

E - Task(summary='sit there', owner='brian', done=False, id=None)

E ? AN AR AN

E + Task(summary='do something', owner='okken', done=False, id=None)
E ? +++ NN AAN AAAN

test_task fail.py:6: AssertionError
1 failed in 0.07 seconds

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 2. Writing Test Functions ¢ 30

Well, I think that’s pretty darned cool. pytest not only found both differences,
but it also showed us exactly where the differences are.

This example only used equality assert; many more varieties of assert statements
with awesome trace debug information are found on the pytest.org website.”

Expecting Exceptions

Exceptions may be raised in a few places in the Tasks API. Let’s take a quick
peek at the functions found in tasks/api.py:

def add(task): # type: (Task) -> int

def get(task id): # type: (int) -> Task

def list tasks(owner=None): # type: (str|None) -> list of Task
def count(): # type: (None) -> int

def update(task id, task): # type: (int, Task) -> None

def delete(task id): # type: (int) -> None

def delete all(): # type: () -> None

def unique id(): # type: () -> int

def start tasks db(db path, db type): # type: (str, str) -> None
def stop tasks db(): # type: () -> None

There’s an agreement between the CLI code in cli.py and the API code in api.py
as to what types will be sent to the API functions. These API calls are a place
where I'd expect exceptions to be raised if the type is wrong.

To make sure these functions raise exceptions if called incorrectly, let’s use
the wrong type in a test function to intentionally cause TypeError exceptions,
and use with pytest.raises(<expected exception>), like this:

ch2/tasks_proj/tests/func/test_api_exceptions.py
import pytest
import tasks

def test add raises():
"""add() should raise an exception with wrong type param."""
with pytest.raises(TypeError):
tasks.add(task="'not a Task object')

In test_add_raises(), the with pytest.raises(TypeError): statement says that whatever is
in the next block of code should raise a TypeError exception. If no exception is
raised, the test fails. If the test raises a different exception, it fails.

We just checked for the type of exception in test_add_raises(). You can also check
the parameters to the exception. For start_tasks_db(db_path, db_type), not only does

2. http://doc.pytest.org/en/latest/example/reportingdemo.html

http://media.pragprog.com/titles/bopytest/code/ch2/tasks_proj/tests/func/test_api_exceptions.py
http://doc.pytest.org/en/latest/example/reportingdemo.html
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Marking Test Functions ® 31

db_type need to be a string, it really has to be either 'tiny' or 'mongo'. You can
check to make sure the exception message is correct by adding as excinfo:

ch2/tasks_proj/tests/func/test_api_exceptions.py
def test start tasks db raises():
"""Make sure unsupported db raises an exception.
with pytest.raises(ValueError) as excinfo:
tasks.start tasks db('some/great/path', ‘'mysql')
exception msg = excinfo.value.args[0]
assert exception msg == "db type must be a 'tiny' or 'mongo

This allows us to look at the exception more closely. The variable name you
put after as (excinfo in this case) is filled with information about the exception,
and is of type Exceptioninfo.

In our case, we want to make sure the first (and only) parameter to the
exception matches a string.

Marking Test Functions

pytest provides a cool mechanism to let you put markers on test functions.
A test can have more than one marker, and a marker can be on multiple
tests.

Markers make sense after you see them in action. Let’'s say we want to run
a subset of our tests as a quick “smoke test” to get a sense for whether or not
there is some major break in the system. Smoke tests are by convention not
all-inclusive, thorough test suites, but a select subset that can be run
quickly and give a developer a decent idea of the health of all parts of the
system.

To add a smoke test suite to the Tasks project, we can add @mark.pytest.smoke
to some of the tests. Let’s add it to a couple of tests in test_api_exceptions.py (note
that the markers smoke and get aren’t built into pytest; I just made them up):

ch2/tasks_proj/tests/func/test_api_exceptions.py
@pytest.mark.smoke
def test list raises():
"""1ist() should raise an exception with wrong type param.
with pytest.raises(TypeError):
tasks.list_tasks(owner=123)

@pytest.mark.get
@pytest.mark.smoke
def test get raises():
"""get() should raise an exception with wrong type param."""
with pytest.raises(TypeError):
tasks.get(task_id='123")

http://media.pragprog.com/titles/bopytest/code/ch2/tasks_proj/tests/func/test_api_exceptions.py
http://media.pragprog.com/titles/bopytest/code/ch2/tasks_proj/tests/func/test_api_exceptions.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 2. Writing Test Functions ¢ 32

Now, let’s run just those tests that are marked with -m marker_name:

$ cd /path/to/code/ch2/tasks_proj/tests/func
$ pytest -v -m 'smoke' test_api_exceptions.py
test session starts

collected 7 items

test api exceptions.py::test list raises PASSED
test api exceptions.py::test get raises PASSED

5 tests deselected
============ 2 passed, 5 deselected in 0.03 seconds ============
$ pytest -v -m 'get' test_api_exceptions.py

test session starts

collected 7 items
test api exceptions.py::test get raises PASSED

6 tests deselected
============ 1 passed, 6 deselected in 0.01 seconds ============

Remember that -v is short for --verbose and lets us see the names of the tests
that are run. Using -m 'smoke' runs both tests marked with @pytest.mark.smoke.
Using -m 'get' runs the one test marked with @pytest.mark.get. Pretty straight-
forward.

It gets better. The expression after -m can use and, or, and not to combine
multiple markers:

$ pytest -v -m 'smoke and get' test_api_exceptions.py
test session starts

collected 7 items

test api exceptions.py::test get raises PASSED

6 tests deselected
============] passed, 6 deselected in 0.03 seconds ============

That time we only ran the test that had both smoke and get markers. We can
use not as well:

$ pytest -v -m 'smoke and not get' test_api_exceptions.py
test session starts

collected 7 items
test api exceptions.py::test list raises PASSED

6 tests deselected
============] passed, 6 deselected in 0.03 seconds ============

The addition of -m 'smoke and not get' selected the test that was marked with
@pytest.mark.smoke but not @pytest.mark.get.

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Marking Test Functions ® 33

Filling Out the Smoke Test

The previous tests don’t seem like a reasonable smoke test suite yet. We
haven’'t actually touched the database or added any tasks. Surely a smoke
test would do that.

Let’s add a couple of tests that look at adding a task, and use one of them as
part of our smoke test suite:

ch2/tasks_proj/tests/func/test_add.py
import pytest

import tasks

from tasks import Task

def test add returns_valid id():
"""tasks.add(<valid task>) should return an integer."""
GIVEN an initialized tasks db
WHEN a new task is added
THEN returned task id is of type int
new task = Task('do something')
task id = tasks.add(new task)
assert isinstance(task id, int)

@pytest.mark.smoke

def test added task has id set():
"""Make sure the task id field is set by tasks.add()."""
GIVEN an initialized tasks db
AND a new task is added
new task = Task('sit in chair', owner='me', done=True)
task_id = tasks.add(new_task)

WHEN task is retrieved
task from db = tasks.get(task id)

THEN task id matches id field
assert task from db.id == task id

Both of these tests have the comment GIVEN an initialized tasks db, and yet there
is no database initialized in the test. We can define a fixture to get the database
initialized before the test and cleaned up after the test:

ch2/tasks_proj/tests/func/test_add.py
@pytest.fixture(autouse=True)
def initialized tasks_db(tmpdir):
"""Connect to db before testing, disconnect after."""
Setup : start db
tasks.start tasks db(str(tmpdir), 'tiny')

yield # this is where the testing happens

Teardown : stop db
tasks.stop_tasks db()

http://media.pragprog.com/titles/bopytest/code/ch2/tasks_proj/tests/func/test_add.py
http://media.pragprog.com/titles/bopytest/code/ch2/tasks_proj/tests/func/test_add.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 2. Writing Test Functions ¢ 34

The fixture, tmpdir, used in this example is a builtin fixture. You'll learn all
about builtin fixtures in Chapter 4, Builtin Fixtures, on page 71, and you’ll

autouse as used in our test indicates that all tests in this file will use the fixture.
The code before the yield runs before each test; the code after the yield runs
after the test. The yield can return data to the test if desired. You’ll look at all
that and more in later chapters, but here we need some way to set up the
database for testing, so I couldn’t wait any longer to show you a fixture. (pytest
also supports old-fashioned setup and teardown functions, like what is used
in unittest and nose, but they are not nearly as fun. However, if you are
curious, they are described in Appendix 5, xUnit Fixtures, on page 183.)

Let’s set aside fixture discussion for now and go to the top of the project and
run our smoke test suite:

$ cd /path/to/code/ch2/tasks_proj
$ pytest -v -m 'smoke'
test session starts

collected 56 items

tests/func/test_add.py::test_added_task has_id_set PASSED
tests/func/test api exceptions.py::test list raises PASSED
tests/func/test api exceptions.py::test get raises PASSED

53 tests deselected
=========== 3 passed, 53 deselected in 0.11 seconds ============

This shows that marked tests from different files can all run together.

Skipping Tests

While the markers discussed in Marking Test Functions, on page 31 were

names of your own choosing, pytest includes a few helpful builtin markers:
skip, skipif, and xfail. I'll discuss skip and skipif in this section, and xfail in the next.

The skip and skipif markers enable you to skip tests you don’t want to run. For
example, let’'s say we weren’t sure how tasks.unique_id() was supposed to work.
Does each call to it return a different number? Or is it just a number that
doesn’t exist in the database already?

First, let’s write a test (note that the initialized_tasks_db fixture is in this file, too;
it’s just not shown here):
ch2/tasks_proj/tests/func/test_unique_id_1.py

import pytest
import tasks

http://media.pragprog.com/titles/bopytest/code/ch2/tasks_proj/tests/func/test_unique_id_1.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Skipping Tests ® 35

def test unique id():
"""Calling unique id() twice should return different numbers."""
id 1 = tasks.unique id()
id 2 = tasks.unique id()
assert id_1 != id 2

Then give it a run:

$ cd /path/to/code/ch2/tasks_proj/tests/func
$ pytest test_unique_id_1.py
test session starts

collected 1 item s

test _unique_id 1l.py F

FAILURES
test_unique_id

def test unique id():
"""Calling unique id() twice should return different numbers."""
id 1 = tasks.unique id()
id 2 = tasks.unique id()
> assert id_1 != id 2
E assert 1 !=1

test unique id 1.py:12: AssertionError
1 failed in 0.06 seconds

Hmm. Maybe we got that wrong. After looking at the API a bit more, we see
that the docstring says """Return an integer that does not exist in the db.""".

We could just change the test. But instead, let’s just mark the first one to get
skipped for now:

ch2/tasks_proj/tests/func/test_unique_id_2.py
@pytest.mark.skip(reason='misunderstood the API')
def test unique id 1():
"""Calling unique id() twice should return different numbers."""
id 1 = tasks.unique id()
id 2 = tasks.unique id()
assert id_1 != id 2

def test unique id 2():
"""unique id() should return an unused id."""
ids = []
ids.append(tasks.add(Task('one')))
ids.append(tasks.add(Task('two')))
ids.append(tasks.add(Task('three')))
grab a unique id
uid = tasks.unique id()
make sure it isn't in the list of existing ids
assert uid not in ids

http://media.pragprog.com/titles/bopytest/code/ch2/tasks_proj/tests/func/test_unique_id_2.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 2. Writing Test Functions ¢ 36

Marking a test to be skipped is as simple as adding @pytest.mark.skip() just above
the test function.

Let’s run again:

$ pytest -v test_unique_id_2.py
test session starts

collected 2 items

test unique_id 2.py::test unique_id_1 SKIPPED
test unique id 2.py::test unique id 2 PASSED

1 passed, 1 skipped in 0.02 seconds

Now, let’s say that for some reason we decide the first test should be valid
also, and we intend to make that work in version 0.2.0 of the package. We
can leave the test in place and use skipif instead:

ch2/tasks_proj/tests/func/test_unique_id_3.py
@pytest.mark.skipif(tasks. version < '0.2.0',
reason="'not supported until version 0.2.0')

def test unique id 1():

"""Calling unique id() twice should return different numbers."""

id 1 = tasks.unique id()

id 2 = tasks.unique id()

assert id 1 != id 2

The expression we pass into skipif() can be any valid Python expression. In this
case, we're checking the package version.

We included reasons in both skip and skipif. It's not required in skip, but it is
required in skipif. I like to include a reason for every skip, skipif, or xfail.

Here’s the output of the changed code:

$ pytest test_unique_id_3.py
test session starts

collected 2 items

test unique id 3.py s.

1 passed, 1 skipped in 0.02 seconds

The s. shows that one test was skipped and one test passed.
We can see which one with -v:

$ pytest -v test_unique_id_3.py
test session starts

collected 2 items

test unique id 3.py::test unique id 1 SKIPPED
test unique id 3.py::test unique id 2 PASSED

1 passed, 1 skipped in 0.03 seconds

http://media.pragprog.com/titles/bopytest/code/ch2/tasks_proj/tests/func/test_unique_id_3.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Marking Tests as Expecting to Fail ® 37

But we still don’t know why. We can see those reasons with -rs:

$ pytest -rs test_unique_id_3.py
test session starts

collected 2 items

test unique id 3.py s.

short test summary info
SKIP [1] func/test unique id 3.py:5: not supported until version 0.2.0

1 passed, 1 skipped in 0.03 seconds

The -r chars option has this help text:

$ pytest --help

-r chars

show extra test summary info as specified by chars
(f)ailed, (E)error, (s)skipped, (x)failed, (X)passed,
(p)passed, (P)passed with output, (a)all except pP.

It’s not only helpful for understanding test skips, but also you can use it for
other test outcomes as well.

Marking Tests as Expecting to Fail

With the skip and skipif markers, a test isn’t even attempted if skipped. With
the xfail marker, we are telling pytest to run a test function, but that we expect
it to fail. Let’s modify our unique_id() test again to use xfail:

ch2/tasks_proj/tests/func/test_unique_id_4.py
@pytest.mark.xfail(tasks. version < '0.2.0',
reason="'not supported until version 0.2.0"')

def test unique id 1():

"""Calling unique id() twice should return different numbers.

id 1 = tasks.unique id()

id 2 = tasks.unique id()

assert id 1 != id 2

@pytest.mark.xfail()

def test unique id is a duck():
"""Demonstrate xfail."""
uid = tasks.unique id()
assert uid == 'a duck'

@pytest.mark.xfail()

def test unique id not a duck():
"""Demonstrate xpass."""
uid = tasks.unique id()
assert uid != 'a duck'

http://media.pragprog.com/titles/bopytest/code/ch2/tasks_proj/tests/func/test_unique_id_4.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 2. Writing Test Functions ¢ 38

The first test is the same as before, but with xfail. The next two tests are listed
as xfail, and differ only by == vs. !=. So one of them is bound to pass.

Running this shows:

$ cd /path/to/code/ch2/tasks_proj/tests/func
$ pytest test_unique_id_4.py
test session starts

collected 4 items
test unique id 4.py xxX.
==========] passed, 2 xfailed, 1 xpassed in 0.07 seconds ===========

The x is for XFAIL, which means “expected to fail.” The capital X is for XPASS or
“expected to fail but passed.”

--verbose lists longer descriptions:

$ pytest -v test_unique_id_4.py
test session starts

collected 4 items

test unique id 4.py::test unique id 1 xfail

test unique id 4.py::test unique id is a duck xfail
test unique id 4.py::test unique id not a duck XPASS
test unique id 4.py::test unique id 2 PASSED

========== 1 passed, 2 xfailed, 1 xpassed in 0.08 seconds ===========

You can configure pytest to report the tests that pass but were marked with
xfail to be reported as FAIL. This is done in a pytest.ini file:

[pytest]
xfail_strict=true

I'll discuss pytest.ini more in Chapter 6, Configuration, on page 113.

Running a Subset of Tests

I've talked about how you can place markers on tests and run tests based on
markers. You can run a subset of tests in several other ways. You can run
all of the tests, or you can select a single directory, file, class within a file, or
an individual test in a file or class. You haven't seen test classes used yet, so
you’ll look at one in this section. You can also use an expression to match
test names. Let’s take a look at these.

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Running a Subset of Tests ® 39

A Single Directory

To run all the tests from one directory, use the directory as a parameter to
pytest:

$ cd /path/to/code/ch2/tasks_proj
$ pytest tests/func --tb=no
test session starts

collected 50 items

tests/func/test add.py ..

tests/func/test add variety.pycciuiiiiiiiiiiiiii i
tests/func/test api exceptions.py
tests/func/test unique id 1l.py F
tests/func/test unique id 2.py s.
tests/func/test unique id 3.py s.
tests/func/test_unique_id 4.py xxX.

1 failed, 44 passed, 2 skipped, 2 xfailed, 1 xpassed in 0.26 seconds
An important trick to learn is that using -v gives you the syntax for how to

run a specific directory, class, and test.

$ pytest -v tests/func --tb=no
test session starts

collected 50 items

tests/func/test add.py::test add returns valid id PASSED
tests/func/test add.py::test added task has id set PASSED

tests/func/test api exceptions.py::test add raises PASSED
tests/func/test api exceptions.py::test list raises PASSED
tests/func/test api exceptions.py::test get raises PASSED

tests/func/test_unique_id_1.py::test_unique_id FAILED
tests/func/test unique id 2.py::test unique id 1 SKIPPED
tests/func/test unique id 2.py::test unique id 2 PASSED

tests/func/test_unique_id 4.py::test unique id 1 xfail
tests/func/test unique id 4.py::test unique id is a duck xfail
tests/func/test unique id 4.py::test unique id not a duck XPASS
tests/func/test unique id 4.py::test unique id 2 PASSED

1 failed, 44 passed, 2 skipped, 2 xfailed, 1 xpassed in 0.30 seconds

You'll see the syntax listed here in the next few examples.

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 2. Writing Test Functions ¢ 40

A Single Test File/Module

To run a file full of tests, list the file with the relative path as a parameter to

pytest:
$ cd /path/to/code/ch2/tasks_proj

$ pytest tests/func/test_add.py
test session starts

collected 2 items

tests/func/test add.py ..

2 passed in 0.05 seconds

We've been doing this for a while.

A Single Test Function
To run a single test function, add :: and the test function name:

$ cd /path/to/code/ch2/tasks_proj
$ pytest -v tests/func/test_add.py::test_add_returns_valid_id
test session starts

collected 3 items

tests/func/test add.py::test add returns valid id PASSED

1 passed in 0.02 seconds

Use -v so you can see which function was run.

A Single Test Class

Test classes are a way to group tests that make sense to be grouped together.
Here’s an example:

ch2/tasks_proj/tests/func/test_api_exceptions.py
class TestUpdate():
"""Test expected exceptions with tasks.update()."""

def test bad id(self):
"""A non-int id should raise an excption."""
with pytest.raises(TypeError):
tasks.update(task id={'dict instead': 1},
task=tasks.Task())

def test bad task(self):
"""A non-Task task should raise an excption."""
with pytest.raises(TypeError):
tasks.update(task id=1, task='not a task')

Since these are two related tests that both test the update() function, it’s rea-
sonable to group them in a class. To run just this class, do like we did with
functions and add ::, then the class name to the file parameter:

http://media.pragprog.com/titles/bopytest/code/ch2/tasks_proj/tests/func/test_api_exceptions.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Running a Subset of Tests ® 41

$ cd /path/to/code/ch2/tasks_proj
$ pytest -v tests/func/test_api_exceptions.py::TestUpdate
test session starts

collected 7 items

tests/func/test api exceptions.py::TestUpdate::test bad id PASSED
tests/func/test api exceptions.py::TestUpdate::test bad task PASSED

2 passed in 0.03 seconds

A Single Test Method of a Test Class

If you don’'t want to run all of a test class—just one method—just add
another :: and the method name:

$ cd /path/to/code/ch2/tasks_proj
$ pytest -v tests/func/test_api_exceptions.py::TestUpdate::test_bad_id
test session starts

collected 1 item

tests/func/test api exceptions.py::TestUpdate::test bad id PASSED

1 passed in 0.03 seconds

Grouping Syntax Shown by Verbose Listing
Remember that the syntax for how to run a subset of tests by
directory, file, function, class, and method doesn’t have to be
memorized. The format is the same as the test function listing
when you run pytest -v.

A Set of Tests Based on Test Name

The -k option enables you to pass in an expression to run tests that have
certain names specified by the expression as a substring of the test name.
You can use and, or, and not in your expression to create complex expressions.

For example, we can run all of the functions that have raises in their name:

$ cd /path/to/code/ch2/tasks_proj
$ pytest -v -k _raises
test session starts

collected 56 items

tests/func/test api exceptions.py::test add raises PASSED
tests/func/test api exceptions.py::test list raises PASSED
tests/func/test api exceptions.py::test get raises PASSED
tests/func/test api exceptions.py::test delete raises PASSED
tests/func/test api exceptions.py::test start tasks db raises PASSED

51 tests deselected
=========== 5 passed, 51 deselected in 0.07 seconds ============

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 2. Writing Test Functions ® 42

We can use and and not to get rid of the test_delete_raises() from the session:

$ pytest -v -k " raises and not delete"
test session starts

collected 56 items

tests/func/test api exceptions.py::test add raises PASSED
tests/func/test api exceptions.py::test list raises PASSED
tests/func/test api exceptions.py::test get raises PASSED
tests/func/test api exceptions.py::test start tasks db raises PASSED

52 tests deselected
=========== 4 passed, 52 deselected in 0.06 seconds ============

In this section, you learned how to run specific test files, directories, classes,
and functions, and how to use expressions with -k to run specific sets of tests.
In the next section, you’ll learn how one test function can turn into many test
cases by allowing the test to run multiple times with different test data.

Parametrized Testing

Sending some values through a function and checking the output to make sure
it’s correct is a common pattern in software testing. However, calling a function
once with one set of values and one check for correctness isn’t enough to fully
test most functions. Parametrized testing is a way to send multiple sets of data
through the same test and have pytest report if any of the sets failed.

To help understand the problem parametrized testing is trying to solve, let’s
take a simple test for add():

ch2/tasks_proj/tests/func/test_add_variety.py
import pytest

import tasks

from tasks import Task

def test add 1():
"""tasks.get() using id returned from add() works."""
task = Task('breathe', 'BRIAN', True)
task id = tasks.add(task)
t from db = tasks.get(task id)
everything but the id should be the same
assert equivalent(t from db, task)

def equivalent(tl, t2):
"""Check two tasks for equivalence."""
Compare everything but the id field
return ((tl.summary == t2.summary) and
(tl.owner == t2.owner) and
(tl.done == t2.done))

http://media.pragprog.com/titles/bopytest/code/ch2/tasks_proj/tests/func/test_add_variety.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Parametrized Testing ® 43

@pytest.fixture(autouse=True)
def initialized tasks db(tmpdir):
"""Connect to db before testing, disconnect after."""
tasks.start_tasks_db(str(tmpdir), 'tiny')
yield
tasks.stop tasks db()

When a Task object is created, its id field is set to None. After it's added and
retrieved from the database, the id field will be set. Therefore, we can’t just
use == to check to see if our task was added and retrieved correctly. The
equivalent() helper function checks all but the id field. The autouse fixture is
included to make sure the database is accessible. Let's make sure the test
passes:

$ cd /path/to/code/ch2/tasks_proj/tests/func
$ pytest -v test_add_variety.py::test_add_1
test session starts

collected 1 item

test add variety.py::test add 1 PASSED

1 passed in 0.03 seconds

The test seems reasonable. However, it’s just testing one example task. What
if we want to test lots of variations of a task? No problem. We can use
@pytest.mark.parametrize(argnames, argvalues) to pass lots of data through the same
test, like this:

ch2/tasks_proj/tests/func/test_add_variety.py
@pytest.mark.parametrize('task',
[Task('sleep', done=True),
Task('wake', 'brian'),
Task('breathe', 'BRIAN', True),
Task('exercise', 'BrIaN', False)])
def test add 2(task):
"""Demonstrate parametrize with one parameter."""
task id = tasks.add(task)
t from db = tasks.get(task id)
assert equivalent(t from db, task)

The first argument to parametrize() is a string with a comma-separated list of
names—'task’, in our case. The second argument is a list of values, which in
our case is a list of Task objects. pytest will run this test once for each task
and report each as a separate test:

$ cd /path/to/code/ch2/tasks_proj/tests/func
$ pytest -v test_add_variety.py::test_add_2
test session starts

collected 4 items

test add variety.py::test add 2[taskQ] PASSED

http://media.pragprog.com/titles/bopytest/code/ch2/tasks_proj/tests/func/test_add_variety.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 2. Writing Test Functions © 44

test add variety.py::test add 2[taskl] PASSED
test add variety.py::test add 2[task2] PASSED
test add variety.py::test add 2[task3] PASSED

4 passed in 0.05 seconds

This use of parametrize() works for our purposes. However, let’s pass in the
tasks as tuples to see how multiple test parameters would work:

ch2/tasks_proj/tests/func/test_add_variety.py
@pytest.mark.parametrize('summary, owner, done',
[('sleep', None, False),
('wake', 'brian', False),
('breathe', 'BRIAN', True),
('eat eggs', 'BrIaN', False),
1)
def test add_3(summary, owner, done):
"""Demonstrate parametrize with multiple parameters."""
task = Task(summary, owner, done)
task id = tasks.add(task)
t from db = tasks.get(task id)
assert equivalent(t from db, task)

When you use types that are easy for pytest to convert into strings, the test
identifier uses the parameter values in the report to make it readable:

$ cd /path/to/code/ch2/tasks_proj/tests/func
$ pytest -v test_add_variety.py::test_add_3
test session starts

collected 4 items

test add variety.py::test add 3[sleep-None-False] PASSED
test add variety.py::test add 3[wake-brian-False] PASSED
test add variety.py::test add 3[breathe-BRIAN-True] PASSED
test add variety.py::test add 3[eat eggs-BrIaN-False]l PASSED

4 passed in 0.05 seconds

You can use that whole test identifier—called a node in pytest terminology—to
re-run the test if you want:

$ cd /path/to/code/ch2/tasks_proj/tests/func
$ pytest -v test_add_variety.py::test_add_3[sleep-None-False]
test session starts

collected 1 item

test add variety.py::test add 3[sleep-None-False] PASSED

1 passed in 0.02 seconds

Be sure to use quotes if there are spaces in the identifier:

http://media.pragprog.com/titles/bopytest/code/ch2/tasks_proj/tests/func/test_add_variety.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Parametrized Testing ® 45

$ cd /path/to/code/ch2/tasks_proj/tests/func
$ pytest -v "test add variety.py::test add 3[eat eggs-BrIaN-False]"
test session starts

collected 1 item

test add variety.py::test add 3[eat eggs-BrIaN-False]l PASSED

1 passed in 0.03 seconds

Now let’s go back to the list of tasks version, but move the task list to a vari-
able outside the function:

ch2/tasks_proj/tests/func/test_add_variety.py
tasks to try = (Task('sleep', done=True),

Task('wake', 'brian'),
Task('wake', 'brian'),
Task('breathe', 'BRIAN', True),
Task('exercise', 'BrIaN', False))

@pytest.mark.parametrize('task', tasks to try)
def test add 4(task):

"""Slightly different take."""

task id = tasks.add(task)

t from db = tasks.get(task id)

assert equivalent(t from db, task)

It's convenient and the code looks nice. But the readability of the output is
hard to interpret:
$ cd /path/to/code/ch2/tasks_proj/tests/func

$ pytest -v test_add_variety.py::test_add_4
test session starts

collected 5 items

test add variety.py::test add 4[task@] PASSED
test add variety.py::test add 4[taskl] PASSED
test add variety.py::test add 4[task2] PASSED
test add variety.py::test add 4[task3] PASSED
test add variety.py::test add 4[task4] PASSED

5 passed in 0.05 seconds

The readability of the multiple parameter version is nice, but so is the list of
Task objects. To compromise, we can use the ids optional parameter to
parametrize() to make our own identifiers for each task data set. The ids param-
eter needs to be a list of strings the same length as the number of data sets.
However, because we assigned our data set to a variable name, tasks_to_try, we
can use it to generate ids:

http://media.pragprog.com/titles/bopytest/code/ch2/tasks_proj/tests/func/test_add_variety.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 2. Writing Test Functions ¢ 46

ch2/tasks_proj/tests/func/test_add_variety.py
task ids = ['Task({},{},{})'.format(t.summary, t.owner, t.done)
for t in tasks to try]

@pytest.mark.parametrize('task', tasks to try, ids=task ids)
def test add 5(task):

"""Demonstrate ids."""

task id = tasks.add(task)

t from db = tasks.get(task id)

assert equivalent(t from db, task)

Let’s run that and see how it looks:

$ cd /path/to/code/ch2/tasks_proj/tests/func
$ pytest -v test_add_variety.py::test_add_5
test session starts

collected 5 items

test add variety.py::test add 5[Task(sleep,None,True)] PASSED

test add variety.py::test add 5[Task(wake,brian,False)@] PASSED
test add variety.py::test add 5[Task(wake,brian,False)1l] PASSED
test add variety.py::test add 5[Task(breathe,BRIAN,True)] PASSED
test add variety.py::test add 5[Task(exercise,BrIaN,False)] PASSED

5 passed in 0.04 seconds
And these test identifiers can be used to run tests:

$ cd /path/to/code/ch2/tasks_proj/tests/func
$ pytest -v "test add variety.py::test add 5[Task(exercise,BrIaN,False)]"
test session starts

collected 1 item

test add variety.py::test add 5[Task(exercise,BrIaN,False)] PASSED

1 passed in 0.03 seconds

We definitely need quotes for these identifiers; otherwise, the brackets and
parentheses will confuse the shell.

You can apply parametrize() to classes as well. When you do that, the same data
sets will be sent to all test methods in the class:

ch2/tasks_proj/tests/func/test_add_variety.py
@pytest.mark.parametrize('task', tasks to try, ids=task ids)
class TestAdd():

"""Demonstrate parametrize and test classes.

def test equivalent(self, task):
""“"Similar test, just within a class.
task id = tasks.add(task)
t from db = tasks.get(task id)
assert equivalent(t from db, task)

http://media.pragprog.com/titles/bopytest/code/ch2/tasks_proj/tests/func/test_add_variety.py
http://media.pragprog.com/titles/bopytest/code/ch2/tasks_proj/tests/func/test_add_variety.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Parametrized Testing ® 47

def test valid id(self, task):
"""We can use the same data or multiple tests."""
task id = tasks.add(task)
t from db = tasks.get(task id)
assert t from db.id == task id

Here it is in action:

$ cd /path/to/code/ch2/tasks_proj/tests/func
$ pytest -v test_add_variety.py::TestAdd
test session starts

collected 10 items

test add variety.py::TestAdd::test equivalent[Task(sleep,None,True)] PASSED

test add_variety.py::TestAdd::test equivalent[Task(wake,brian,False)0] PASSED
test add variety.py::TestAdd::test equivalent[Task(wake,brian,False)1l] PASSED
test add variety.py::TestAdd::test equivalent[Task(breathe,BRIAN,True)] PASSED
test add variety.py::TestAdd::test equivalent[Task(exercise,BrIaN,False)] PASSED
test add variety.py::TestAdd::test valid id[Task(sleep,None,True)] PASSED

test add variety.py::TestAdd::test valid id[Task(wake,brian,False)0®] PASSED

test add variety.py::TestAdd::test valid id[Task(wake,brian,False)1l] PASSED

test add variety.py::TestAdd::test valid id[Task(breathe,BRIAN,True)] PASSED
test add variety.py::TestAdd::test valid id[Task(exercise,BrIaN,False)] PASSED

10 passed in 0.08 seconds

You can also identify parameters by including an id right alongside the
parameter value when passing in a list within the @pytest.mark.parametrize()
decorator. You do this with pytest.param(<value>, id="something") syntax:

ch2/tasks_proj/tests/func/test_add_variety.py
@pytest.mark.parametrize('task', [
pytest.param(Task('create'), id='just summary'),
pytest.param(Task('inspire', 'Michelle'), id='summary/owner'),
pytest.param(Task('encourage', 'Michelle', True), id='summary/owner/done')])
def test add 6(task):
"""Demonstrate pytest.param and id."""
task id = tasks.add(task)
t from db = tasks.get(task id)
assert equivalent(t from db, task)

In action:

$ cd /path/to/code/ch2/tasks_proj/tests/func
$ pytest -v test_add_variety.py::test_add_6
test session starts

collected 3 items

test add variety.py::test add 6[just summary] PASSED
test add variety.py::test add 6[summary/owner] PASSED
test add variety.py::test add 6[summary/owner/done] PASSED

3 passed in 0.05 seconds

http://media.pragprog.com/titles/bopytest/code/ch2/tasks_proj/tests/func/test_add_variety.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 2. Writing Test Functions © 48

This is useful when the id cannot be derived from the parameter value.

Exercises

1.

Download the project for this chapter, tasks_proj, from the book’s webpage®
and make sure you can install it locally with pip install /path/to/tasks_proj.

Explore the tests directory.
Run pytest with a single file.

Run pytest against a single directory, such as tasks_proj/tests/func. Use pytest
to run tests individually as well as a directory full at a time. There are
some failing tests there. Do you understand why they fail?

Add xfail or skip markers to the failing tests until you can run pytest from
the tests directory with no arguments and no failures.

We don’t have any tests for tasks.count() yet, among other functions. Pick
an untested API function and think of which test cases we need to have
to make sure it works correctly.

What happens if you try to add a task with the id already set? There are
some missing exception tests in test_api_exceptions.py. See if you can fill in
the missing exceptions. (It's okay to look at api.py for this exercise.)

What’'s Next

You've run through a lot of the power of pytest in this chapter. Even with just
what's covered here, you can start supercharging your test suites. In many
of the examples, you used a fixture called initialized_tasks_db. Fixtures can sepa-
rate retrieving and/or generating test data from the real guts of a test function.
They can also separate common code so that multiple test functions can use

the same setup. In the next chapter, you’ll take a deep dive into the wonderful
world of pytest fixtures.

3.

https://pragprog.com/titles/bopytest/source_code

https://pragprog.com/titles/bopytest/source_code
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

CHAPTER 3

pytest Fixtures

Now that you've seen the basics of pytest, let’s turn our attention to fixtures,
which are essential to structuring test code for almost any non-trivial software
system. Fixtures are functions that are run by pytest before (and sometimes
after) the actual test functions. The code in the fixture can do whatever you
want it to. You can use fixtures to get a data set for the tests to work on. You
can use fixtures to get a system into a known state before running a test.
Fixtures are also used to get data ready for multiple tests.

Here’s a simple fixture that returns a number:

ch3/test_fixtures.py
import pytest

@pytest.fixture()

def some data():
"""Return answer to ultimate question."""
return 42

def test some data(some data):
"""Use fixture return value in a test."""
assert some data == 42

The @pytest.fixture() decorator is used to tell pytest that a function is a fixture.
When you include the fixture name in the parameter list of a test function,
pytest knows to run it before running the test. Fixtures can do work, and can
also return data to the test function.

The test test some_data() has the name of the fixture, some_data, as a parameter.
pytest will see this and look for a fixture with this name. Naming is significant
in pytest. pytest will look in the module of the test for a fixture of that name.
It will also look in conftest.py files if it doesn’t find it in this file.

http://media.pragprog.com/titles/bopytest/code/ch3/test_fixtures.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 3. pytest Fixtures ® 50

Before we start our exploration of fixtures (and the conftest.py file), I need to
address the fact that the term fixture has many meanings in the programming
and test community, and even in the Python community. I use “fixture,”
“fixture function,” and “fixture method” interchangeably to refer to the
@pytest.fixture() decorated functions discussed in this chapter. Fixture can also
be used to refer to the resource that is being set up by the fixture functions.
Fixture functions often set up or retrieve some data that the test can work
with. Sometimes this data is considered a fixture. For example, the Django
community often uses fixture to mean some initial data that gets loaded into
a database at the start of an application.

Regardless of other meanings, in pytest and in this book, test fixtures refer
to the mechanism pytest provides to allow the separation of “getting ready
for” and “cleaning up after” code from your test functions.

pytest fixtures are one of the unique core features that make pytest stand
out above other test frameworks, and are the reason why many people switch
to and stay with pytest. However, fixtures in pytest are different than fixtures
in Django and different than the setup and teardown procedures found in
unittest and nose. There are a lot of features and nuances about fixtures.
Once you get a good mental model of how they work, they will seem easy to
you. However, you have to play with them a while to get there, so let’s get
started.

Sharing Fixtures Through conftest.py

You can put fixtures into individual test files, but to share fixtures among
multiple test files, you need to use a conftest.py file somewhere centrally located
for all of the tests. For the Tasks project, all of the fixtures will be in
tasks_proj/tests/conftest.py.

From there, the fixtures can be shared by any test. You can put fixtures in
individual test files if you want the fixture to only be used by tests in that
file. Likewise, you can have other conftest.py files in subdirectories of the top
tests directory. If you do, fixtures defined in these lower-level conftest.py files
will be available to tests in that directory and subdirectories. So far, however,
the fixtures in the Tasks project are intended to be available to any test.
Therefore, putting all of our fixtures in the conftest.py file at the test root,
tasks_proj/tests, makes the most sense.

Although conftest.py is a Python module, it should not be imported by test files.
Don’t import conftest from anywhere. The conftest.py file gets read by pytest, and
is considered a local plugin, which will make sense once we start talking about

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Using Fixtures for Setup and Teardown © 51

plugins in Chapter 5, Plugins, on page 95. For now, think of tests/conftest.py as

a place where we can put fixtures used by all tests under the tests directory.

Next, let’s rework some our tests for tasks_proj to properly use fixtures.

Using Fixtures for Setup and Teardown

Most of the tests in the Tasks project will assume that the Tasks database is
already set up and running and ready. And we should clean things up at the
end if there is any cleanup needed. And maybe also disconnect from the
database. Luckily, most of this is taken care of within the tasks code with
tasks.start_tasks _db(<directory to store db>, 'tiny' or 'mongo') and tasks.stop_tasks_db(); we
just need to call them at the right time, and we need a temporary directory.

Fortunately, pytest includes a cool fixture called tmpdir that we can use for
testing and don’t have to worry about cleaning up. It’s not magic, just good
coding by the pytest folks. (Don’t worry; we look at tmpdir and it’s session-
scoped relative tmpdir_factory in more depth in Using tmpdir and tmpdir_factory,
onpage 7L) R

Given those pieces, this fixture works nicely:

ch3/a/tasks_proj/tests/conftest.py
import pytest

import tasks

from tasks import Task

@pytest.fixture()

def tasks db(tmpdir):
"""Connect to db before tests, disconnect after."""
Setup : start db
tasks.start tasks db(str(tmpdir), 'tiny')

yield # this is where the testing happens

Teardown : stop db
tasks.stop tasks db()

The value of tmpdir isn’t a string—it’s an object that represents a directory.
However, it implements _str_, so we can use str() to get a string to pass to
start_tasks_db(). We're still using 'tiny' for TinyDB, for now.

A fixture function runs before the tests that use it. However, if there is a yield
in the function, it stops there, passes control to the tests, and picks up on
the next line after the tests are done. Therefore, think of the code above the
yield as “setup” and the code after yield as “teardown.” The code after the yield,
the “teardown,” is guaranteed to run regardless of what happens during the
tests. We're not returning any data with the yield in this fixture. But you can.

http://media.pragprog.com/titles/bopytest/code/ch3/a/tasks_proj/tests/conftest.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 3. pytest Fixtures ® 52

Let’s change one of our tasks.add() tests to use this fixture:

ch3/a/tasks_proj/tests/func/test_add.py
import pytest

import tasks

from tasks import Task

def test add returns valid id(tasks db):
"""tasks.add(<valid task>) should return an integer."""
GIVEN an initialized tasks db
WHEN a new task is added
THEN returned task id is of type int
new task = Task('do something')
task id = tasks.add(new task)
assert isinstance(task id, int)

The main change here is that the extra fixture in the file has been removed,
and we've added tasks_db to the parameter list of the test. I like to structure
tests in a GIVEN/WHEN/THEN format using comments, especially when it
isn’t obvious from the code what’s going on. I think it’s helpful in this case.
Hopefully, GIVEN an initialized tasks db helps to clarify why tasks db is used as a fix-
ture for the test.

Make Sure Tasks Is Installed
_'/ We're still writing tests to be run against the Tasks project in this
= | chapter, which was first installed in Chapter 2. If you skipped that
chapter, be sure to install tasks with cd code; pip install ./tasks_proj/.

Tracing Fixture Execution with —-setup-show

If you run the test from the last section, you don’t get to see what fixtures
are run:

$ cd /path/to/code/
$ pip install ./tasks_proj/ # if not installed yet
$ cd /path/to/code/ch3/a/tasks_proj/tests/func
$ pytest -v test_add.py -k valid_id
test session starts

collected 3 items

test add.py::test add returns valid id PASSED

2 tests deselected
============ 1 passed, 2 deselected in 0.02 seconds ============

When I'm developing fixtures, I like to see what’s running and when. Fortu-
nately, pytest provides a command-line flag, --setup-show, that does just that:

http://media.pragprog.com/titles/bopytest/code/ch3/a/tasks_proj/tests/func/test_add.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Using Fixtures for Test Data ® 53

$ pytest --setup-show test_add.py -k valid_id
test session starts

collected 3 items

test add.py
SETUP S tmpdir factory
SETUP F tmpdir (fixtures used: tmpdir factory)
SETUP F tasks db (fixtures used: tmpdir)
func/test add.py::test add returns valid id
(fixtures used: tasks db, tmpdir, tmpdir factory).
TEARDOWN F tasks db
TEARDOWN F tmpdir
TEARDOWN S tmpdir factory

2 tests deselected
============ 1 passed, 2 deselected in 0.02 seconds ============

Our test is in the middle, and pytest designates a SETUP and TEARDOWN portion
to each fixture. Going from test add_returns_valid_id up, you see that tmpdir ran
before the test. And before that, tmpdir_factory. Apparently, tmpdir uses it as a
fixture.

The F and S in front of the fixture names indicate scope. F for function scope,
and S for session scope. I'll talk about scope in Specifying Fixture Scope, on

Using Fixtures for Test Data

Fixtures are a great place to store data to use for testing. You can return
anything. Here’s a fixture returning a tuple of mixed type:

ch3/test_fixtures.py

@pytest.fixture()

def a tuple():
"""Return something more interesting.
return (1, 'foo', None, {'bar': 23})

def test a tuple(a tuple):
"""Demo the a tuple fixture.
assert a tuple[3]['bar'] == 32

Since test_a_tuple() should fail (23 != 32), we can see what happens when a test
with a fixture fails:

$ cd /path/to/code/ch3
$ pytest test_fixtures.py::test_a_tuple
test session starts

collected 1 item

test fixtures.py F

http://media.pragprog.com/titles/bopytest/code/ch3/test_fixtures.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 3. pytest Fixtures ¢ 54

FAILURES
test a tuple

a tuple = (1, 'foo', None, {'bar': 23})

def test a tuple(a_tuple):
"""Demo the a tuple fixture."""
> assert a tuple[3]['bar'] == 32
E assert 23 == 32

test fixtures.py:43: AssertionError
1 failed in 0.07 seconds

Along with the stack trace section, pytest reports the value parameters of the
function that raised the exception or failed an assert. In the case of tests, the
fixtures are parameters to the test, and are therefore reported with the stack
trace.

What happens if the assert (or any exception) happens in the fixture?

$ pytest -v test_fixtures.py::test_other_data
test session starts

collected 1 item
test fixtures.py::test_other_data ERROR

ERRORS
ERROR at setup of test other data

@pytest.fixture()
def some other data():
"""Raise an exception from fixture.

X = 43
> assert x == 42
E assert 43 == 42

test fixtures.py:24: AssertionError
1 error in 0.04 seconds

A couple of things happen. The stack trace shows correctly that the assert
happened in the fixture function. Also, test other data is reported not as FAIL,
but as ERROR. This distinction is great. If a test ever fails, you know the failure
happened in the test proper, and not in any fixture it depends on.

But what about the Tasks project? For the Tasks project, we could probably
use some data fixtures, perhaps different lists of tasks with various properties:

ch3/a/tasks_proj/tests/conftest.py

Reminder of Task constructor interface

Task(summary=None, owner=None, done=False, id=None)
summary is required

owner and done are optional

id is set by database

http://media.pragprog.com/titles/bopytest/code/ch3/a/tasks_proj/tests/conftest.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Using Multiple Fixtures ¢ 55

@pytest.fixture()
def tasks just a few():
"""All summaries and owners are unique.
return (
Task('Write some code', 'Brian', True),
Task("Code review Brian's code", 'Katie', False),
Task('Fix what Brian did', 'Michelle', False))

@pytest.fixture()
def tasks mult per owner():
"""Several owners with several tasks each."""

return (
Task('Make a cookie', 'Raphael'),
Task('Use an emoji', 'Raphael'),

Task('Move to Berlin', 'Raphael'),

Task('Create', 'Michelle'),
Task('Inspire', 'Michelle'),
Task('Encourage', 'Michelle'),

Task('Do a handstand', 'Daniel'),
Task('Write some books', 'Daniel'),
Task('Eat ice cream', 'Daniel'))

You can use these directly from tests, or you can use them from other fixtures.
Let’s use them to build up some non-empty databases to use for testing.

Using Multiple Fixtures

You've already seen that tmpdir uses tmpdir_factory. And you used tmpdir in our
tasks_db fixture. Let’s keep the chain going and add some specialized fixtures
for non-empty tasks databases:

ch3/a/tasks_proj/tests/conftest.py
@pytest.fixture()
def db with 3 tasks(tasks db, tasks just a few):
"""Connected db with 3 tasks, all unique."""
for t in tasks just a few:
tasks.add(t)

@pytest.fixture()
def db with multi per owner(tasks db, tasks mult per owner):
"""Connected db with 9 tasks, 3 owners, all with 3 tasks."""
for t in tasks mult per owner:
tasks.add(t)

These fixtures all include two fixtures each in their parameter list: tasks_db
and a data set. The data set is used to add tasks to the database. Now tests
can use these when you want the test to start from a non-empty database,
like this:

http://media.pragprog.com/titles/bopytest/code/ch3/a/tasks_proj/tests/conftest.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 3. pytest Fixtures ® 56

ch3/a/tasks_proj/tests/func/test_add.py

def test add increases count(db with 3 tasks):
"""Test tasks.add() affect on tasks.count()."""
GIVEN a db with 3 tasks
WHEN another task is added
tasks.add(Task('throw a party'))

THEN the count increases by 1
assert tasks.count() ==

This also demonstrates one of the great reasons to use fixtures: to focus the
test on what you're actually testing, not on what you had to do to get ready
for the test. I like using comments for GIVEN/WHEN/THEN and trying to
push as much GIVEN into fixtures for two reasons. First, it makes the test
more readable and, therefore, more maintainable. Second, an assert or exception
in the fixture results in an ERROR, while an assert or exception in a test
function results in a FAIL. I don’'t want test add increases count() to FAIL if
database initialization failed. That would just be confusing. I want a FAIL for
test add _increases_count() to only be possible if add() really failed to alter the count.
Let’s trace it and see all the fixtures run:

$ cd /path/to/code/ch3/a/tasks_proj/tests/func
$ pytest --setup-show test_add.py::test_add_increases_count
test session starts

collected 1 item

test add.py
SETUP S tmpdir factory
SETUP F tmpdir (fixtures used: tmpdir factory)
SETUP F tasks db (fixtures used: tmpdir)
SETUP F tasks just a few
SETUP F db with 3 tasks (fixtures used: tasks db, tasks just a few)
func/test add.py::test add increases count
(fixtures used: db with 3 tasks, tasks db, tasks just a few,
tmpdir, tmpdir factory).
TEARDOWN F db_with 3 tasks
TEARDOWN F tasks just a few
TEARDOWN F tasks db
TEARDOWN F tmpdir
TEARDOWN S tmpdir factory

1 passed in 0.04 seconds

There are those F's and S’s for function and session scope again. Let’s learn
about those next.

Specifying Fixture Scope

Fixtures include an optional parameter called scope, which controls how often
a fixture gets set up and torn down. The scope parameter to @pytest.fixture() can

http://media.pragprog.com/titles/bopytest/code/ch3/a/tasks_proj/tests/func/test_add.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Specifying Fixture Scope ¢ 57

have the values of function, class, module, or session. The default scope is function.
The tasks_db fixture and all of the fixtures so far don’t specify a scope. Therefore,
they are function scope fixtures.

Here’s a rundown of each scope value:

scope='function'
Run once per test function. The setup portion is run before each test using
the fixture. The teardown portion is run after each test using the fixture.
This is the default scope used when no scope parameter is specified.

scope='class'
Run once per test class, regardless of how many test methods are in the class.

scope="'module'
Run once per module, regardless of how many test functions or methods
or other fixtures in the module use it.

scope='session'
Run once per session. All test methods and functions using a fixture of
session scope share one setup and teardown call.

Here’s how the scope values look in action:

ch3/test_scope.py
"""Demo fixture scope."""

import pytest

@pytest.fixture(scope='function')
def func_scope():
"""A function scope fixture."""

@pytest.fixture(scope='module')
def mod scope():
"""A module scope fixture."""

@pytest.fixture(scope='session')
def sess scope():
"""A session scope fixture."""

@pytest.fixture(scope='class')
def class_scope():

"""A class scope fixture."""
def test 1(sess scope, mod scope, func scope):

"""Test using session, module, and function scope fixtures."""

def test 2(sess scope, mod scope, func scope):
"""Demo is more fun with multiple tests."""

http://media.pragprog.com/titles/bopytest/code/ch3/test_scope.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 3. pytest Fixtures ® 58

@pytest.mark.usefixtures('class scope')
class TestSomething():
"""Demo class scope fixtures."""

def test 3(self):
"""Test using a class scope fixture."""

def test 4(self):
"""Again, multiple tests are more fun."""

Let’s use --setup-show to demonstrate that the number of times a fixture is called
and when the setup and teardown are run depend on the scope:

$ cd /path/to/code/ch3
$ pytest --setup-show test_scope.py
test session starts

collected 4 items

test scope.py
SETUP S sess_scope
SETUP M mod_scope
SETUP F func_scope
test scope.py::test 1
(fixtures used: func_scope, mod scope, sess scope).
TEARDOWN F func_scope
SETUP F func_scope
test scope.py::test 2
(fixtures used: func_scope, mod scope, sess scope).
TEARDOWN F func_scope
SETUP C class_scope
test scope.py::TestSomething::()::test 3 (fixtures used: class scope).
test scope.py::TestSomething::()::test 4 (fixtures used: class scope).
TEARDOWN C class scope
TEARDOWN M mod_scope
TEARDOWN S sess scope

4 passed in 0.01 seconds

Now you get to see not just F and S for function and session, but also C and
M for class and module.

Scope is defined with the fixture. I know this is obvious from the code, but
it’s an important point to make sure you fully grok. The scope is set at the
definition of a fixture, and not at the place where it’s called. The test functions
that use a fixture don’t control how often a fixture is set up and torn down.

Fixtures can only depend on other fixtures of their same scope or wider. So
a function scope fixture can depend on other function scope fixtures (the
default, and used in the Tasks project so far). A function scope fixture can
also depend on class, module, and session scope fixtures, but you can’t go
in the reverse order.

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Specifying Fixture Scope ® 59

Changing Scope for Tasks Project Fixtures

With this knowledge of scope, let’'s now change the scope of some of the Task
project fixtures.

So far, we haven’'t had a problem with test times. But it seems like a waste
to set up a temporary directory and new connection to a database for every
test. As long as we can ensure an empty database when needed, that should
be sufficient.

To have something like tasks_db be session scope, you need to use tmpdir_factory,
since tmpdir is function scope and tmpdir factory is session scope. Luckily, this
is just a one-line code change (well, two if you count tmpdir -> tmpdir_factory in
the parameter list):

ch3/b/tasks_proj/tests/conftest.py
import pytest

import tasks

from tasks import Task

@pytest.fixture(scope='session')

def tasks db session(tmpdir factory):
"""Connect to db before tests, disconnect after."""
temp dir = tmpdir factory.mktemp('temp')
tasks.start tasks db(str(temp dir), 'tiny')
yield
tasks.stop_tasks db()

@pytest.fixture()

def tasks db(tasks db session):
"""An empty tasks db."""
tasks.delete all()

Here we changed tasks_db to depend on tasks_db_session, and we deleted all the
entries to make sure it's empty. Because we didn’t change its name, none of
the fixtures or tests that already include it have to change.

The data fixtures just return a value, so there really is no reason to have them
run all the time. Once per session is sufficient:

ch3/b/tasks_proj/tests/conftest.py

Reminder of Task constructor interface

Task(summary=None, owner=None, done=False, id=None)
summary is required

owner and done are optional

id is set by database

http://media.pragprog.com/titles/bopytest/code/ch3/b/tasks_proj/tests/conftest.py
http://media.pragprog.com/titles/bopytest/code/ch3/b/tasks_proj/tests/conftest.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 3. pytest Fixtures ® 60

@pytest.fixture(scope="'session')
def tasks just a few():
"""All summaries and owners are unique.
return (
Task('Write some code', 'Brian', True),
Task("Code review Brian's code", 'Katie', False),
Task('Fix what Brian did', 'Michelle', False))

@pytest.fixture(scope="'session')
def tasks mult per owner():
"""Several owners with several tasks each."""

return (
Task('Make a cookie', 'Raphael'),
Task('Use an emoji', 'Raphael'),

Task('Move to Berlin', 'Raphael'),

Task('Create', 'Michelle'),
Task('Inspire', 'Michelle'),
Task('Encourage', 'Michelle'),

Task('Do a handstand', 'Daniel'),
Task('Write some books', 'Daniel'),
Task('Eat ice cream', 'Daniel'))

Now, let’s see if all of these changes work with our tests:

$ cd /path/to/code/ch3/b/tasks_proj
$ pytest

test session starts
collected 55 items

tests/func/test add.py ...

tests/func/test add variety.pycciiiiiiiiiiiiiin.,
tests/func/test add variety2.py
tests/func/test api exceptions.py
tests/func/test unique id.py .

tests/unit/test task.py

55 passed in 0.17 seconds

Looks like it’s all good. Let’s trace the fixtures for one test file to see if the
different scoping worked as expected:

$ pytest --setup-show tests/func/test_add.py
test session starts

collected 3 items

tests/func/test add.py
SETUP S tmpdir factory
SETUP S tasks db session (fixtures used: tmpdir factory)
SETUP F tasks db (fixtures used: tasks db session)
tests/func/test add.py::test add returns valid id
(fixtures used: tasks db, tasks db session, tmpdir factory).
TEARDOWN F tasks db

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Specifying Fixtures with usefixtures ¢ 61

SETUP F tasks db (fixtures used: tasks db session)
tests/func/test add.py::test added task has id set
(fixtures used: tasks db, tasks db session, tmpdir factory).
TEARDOWN F tasks db
SETUP F tasks db (fixtures used: tasks db session)
SETUP S tasks just a few
SETUP F db with 3 tasks (fixtures used: tasks db, tasks just a few)
tests/func/test add.py::test add increases count
(fixtures used: db with 3 tasks, tasks db, tasks db session,
tasks just a few, tmpdir factory).
TEARDOWN F db with 3 tasks
TEARDOWN F tasks db
TEARDOWN S tasks_just a_ few
TEARDOWN S tasks db session
TEARDOWN S tmpdir factory

3 passed in 0.03 seconds

Yep. Looks right. tasks_db_session is called once per session, and the quicker
tasks_db now just cleans out the database before each test.

Specifying Fixtures with usefixtures

So far, if you wanted a test to use a fixture, you put it in the parameter list.
You can also mark a test or a class with @pytest.mark.usefixtures('fixturel', 'fixture2').
usefixtures takes a string that is composed of a comma-separated list of fixtures
to use. It doesn’t make sense to do this with test functions—it’s just more
typing. But it does work well for test classes:

ch3/test_scope.py
@pytest.mark.usefixtures('class scope')
class TestSomething():

"""Demo class scope fixtures.

def test 3(self):
"""Test using a class scope fixture.

def test 4(self):
"""Again, multiple tests are more fun.

Using usefixtures is almost the same as specifying the fixture name in the test
method parameter list. The one difference is that the test can use the return
value of a fixture only if it’'s specified in the parameter list. A test using a fix-
ture due to usefixtures cannot use the fixture’s return value.

Using autouse for Fixtures That Always Get Used

So far in this chapter, all of the fixtures used by tests were named by the
tests (or used usefixtures for that one class example). However, you can use
autouse=True to get a fixture to run all of the time. This works well for code you

http://media.pragprog.com/titles/bopytest/code/ch3/test_scope.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 3. pytest Fixtures ® 62

want to run at certain times, but tests don’t really depend on any system
state or data from the fixture. Here’s a rather contrived example:

ch3/test_autouse.py
"""Demonstrate autouse fixtures.

import pytest
import time

@pytest.fixture(autouse=True, scope='session')
def footer session scope():
"""Report the time at the end of a session.

yield

now = time.time()

print('--")

print('finished : {}'.format(time.strftime('%sd %b %X', time.localtime(now))))
print('----------------- 0

@pytest.fixture(autouse=True)
def footer function scope():
"""Report test durations after each function."""
start = time.time()
yield
stop = time.time()
delta = stop - start
print('\ntest duration : {:0.3} seconds'.format(delta))

def test 1():
"""Simulate long-ish running test."""
time.sleep(1)

def test 2():
"""Simulate slightly longer test."""
time.sleep(1.23)

We want to add test times after each test, and the date and current time at
the end of the session. Here’s what these look like:

$ cd /path/to/code/ch3
$ pytest -v -s test_autouse.py
test session starts

collected 2 items

test autouse.py::test 1 PASSED
test duration : 1.0 seconds

test autouse.py::test 2 PASSED
test duration : 1.24 seconds

finished : 25 Jul 16:18:27

2 passed in 2.25 seconds

http://media.pragprog.com/titles/bopytest/code/ch3/test_autouse.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Renaming Fixtures ¢ 63

The autouse feature is good to have around. But it’s more of an exception than
a rule. Opt for named fixtures unless you have a really great reason not to.

Now that you've seen autouse in action, you may be wondering why we didn’t
use it for tasks_db in this chapter. In the Tasks project, I felt it was important
to keep the ability to test what happens if we try to use an API function before
db initialization. It should raise an appropriate exception. But we can’t test
this if we force good initialization on every test.

Renaming Fixtures

The name of a fixture, listed in the parameter list of tests and other fixtures
using it, is usually the same as the function name of the fixture. However,
pytest allows you to rename fixtures with a name parameter to @pytest.fixture():

ch3/test_rename_fixture.py
"""Demonstrate fixture renaming."""

import pytest

@pytest.fixture(name="'1lue")

def ultimate answer to life the universe and everything():
"""Return ultimate answer."""
return 42

def test everything(lue):
"""Use the shorter name."""
assert lue == 42

Here, lue is now the fixture name, instead of fixture_with_a_name_much_longer _than_lue.
That name even shows up if we run it with --setup-show:

$ pytest --setup-show test_rename_fixture.py
test session starts

collected 1 items

test rename_ fixture.py
SETUP F lue
test rename fixture.py::test everything 2 (fixtures used: lue).
TEARDOWN F lue

1 passed in 0.01 seconds

If you need to find out where lue is defined, you can add the pytest option
-fixtures and give it the filename for the test. It lists all the fixtures available
for the test, including ones that have been renamed:

$ pytest --fixtures test_rename_fixture.py
test session starts

http://media.pragprog.com/titles/bopytest/code/ch3/test_rename_fixture.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 3. pytest Fixtures ® 64

Return ultimate answer.

no tests ran in 0.01 seconds

Most of the output is omitted—there’s a lot there. Luckily, the fixtures we
defined are at the bottom, along with where they are defined. We can use this
to look up the definition of lue. Let’s use that in the Tasks project:

$ cd /path/to/code/ch3/b/tasks_proj

$ pytest --fixtures tests/func/test_add.py
test session starts

tmpdir factory
Return a TempdirFactory instance for the test session.
tmpdir
Return a temporary directory path object which is
unique to each test function invocation, created as
a sub directory of the base temporary directory.
The returned object is a “py.path.local’ path object.

------------------ fixtures defined from conftest -------------------
tasks _db session
Connect to db before tests, disconnect after.
tasks _db
An empty tasks db.
tasks just a few
All summaries and owners are unique.
tasks_mult_per_owner
Several owners with several tasks each.
db with 3 tasks
Connected db with 3 tasks, all unique.
db with multi per owner
Connected db with 9 tasks, 3 owners, all with 3 tasks.

no tests ran in 0.01 seconds

Cool. All of our conftest.py fixtures are there. And at the bottom of the builtin
list is the tmpdir and tmpdir_factory that we used also.

Parametrizing Fixtures

In Parametrized Testing, on page 42, we parametrized tests. We can also

parametrize fixtures. We still use our list of tasks, list of task identifiers, and
an equivalence function, just as before:

ch3/b/tasks_proj/tests/func/test_add_variety2.py
import pytest

import tasks

from tasks import Task

http://media.pragprog.com/titles/bopytest/code/ch3/b/tasks_proj/tests/func/test_add_variety2.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Parametrizing Fixtures ® 65

tasks_to_try = (Task('sleep', done=True),

(
Task('wake', 'brian'),
Task('breathe', 'BRIAN', True),
Task('exercise', 'BrIaN', False))

task ids = ['Task({},{},{})"'.format(t.summary, t.owner, t.done)
for t in tasks_to_try]

def equivalent(tl, t2):
"""Check two tasks for equivalence.
return ((tl.summary == t2.summary) and
(tl.owner == t2.owner) and
(tl.done == t2.done))

But now, instead of parametrizing the test, we will parametrize a fixture
called a_task:

ch3/b/tasks_proj/tests/func/test_add_variety2.py
@pytest.fixture(params=tasks to try)
def a task(request):

"""Using no ids."""

return request.param

def test add a(tasks db, a task):
"""Using a task fixture (no ids)."""
task id = tasks.add(a_task)
t from db = tasks.get(task id)
assert equivalent(t from db, a task)

The request listed in the fixture parameter is another builtin fixture that repre-
sents the calling state of the fixture. You’'ll explore it more in the next chapter.
It has a field param that is filled in with one element from the list assigned to
params in @pytest.fixture(params=tasks_to_try).

The a_task fixture is pretty simple—it just returns the request.param as its value
to the test using it. Since our task list has four tasks, the fixture will be called
four times, and then the test will get called four times:

$ cd /path/to/code/ch3/b/tasks_proj/tests/func
$ pytest -v test_add_variety2.py::test_add_a
test session starts

collected 4 items

test add variety2.py::test add a[a task0] PASSED
test add variety2.py::test add al[a taskl] PASSED
test add variety2.py::test add al[a task2] PASSED
test add variety2.py::test add a[a task3] PASSED

4 passed in 0.03 seconds

http://media.pragprog.com/titles/bopytest/code/ch3/b/tasks_proj/tests/func/test_add_variety2.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 3. pytest Fixtures ® 66

We didn’t provide ids, so pytest just made up some names by appending a
number to the name of the fixture. However, we can use the same string list
we used when we parametrized our tests:

ch3/b/tasks_proj/tests/func/test_add_variety2.py

@pytest.fixture(params=tasks to try, ids=task ids)

def b task(request):
"""Using a list of 1ids.
return request.param

def test add b(tasks db, b task):
"""Using b task fixture, with ids."""
task_id = tasks.add(b_task)
t from db = tasks.get(task id)
assert equivalent(t _from db, b task)

This gives us better identifiers:

$ pytest -v test_add_variety2.py::test_add_b
test session starts

collected 4 items

test add variety2.py::test add b[Task
test add variety2.py::test add b[Task
test add variety2.py::test add b[Task
test add variety2.py::test add b[Task

sleep,None,True)] PASSED
wake,brian,False)] PASSED
breathe,BRIAN,True)] PASSED
exercise,BrIaN,False)] PASSED

—_— o~~~

4 passed in 0.04 seconds

We can also set the ids parameter to a function we write that provides the
identifiers. Here’s what it looks like when we use a function to generate the
identifiers:

ch3/b/tasks_proj/tests/func/test_add_variety2.py
def id func(fixture value):
"""A function for generating ids."""
t = fixture_ value
return 'Task({},{},{})'.format(t.summary, t.owner, t.done)

@pytest.fixture(params=tasks to try, ids=id func)

def c task(request):
"""Using a function (id func) to generate ids."""
return request.param

def test add c(tasks db, c task):
"""Use fixture with generated ids."""
task id = tasks.add(c_task)
t from db = tasks.get(task id)
assert equivalent(t_from_db, c_task)

http://media.pragprog.com/titles/bopytest/code/ch3/b/tasks_proj/tests/func/test_add_variety2.py
http://media.pragprog.com/titles/bopytest/code/ch3/b/tasks_proj/tests/func/test_add_variety2.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Parametrizing Fixtures ® 67

The function will be called from the value of each item from the parametrization.
Since the parametrization is a list of Task objects, id_func() will be called with a
Task object, which allows us to use the namedtuple accessor methods to access a
single Task object to generate the identifier for one Task object at a time. It’s a bit
cleaner than generating a full list ahead of time, and looks the same:

$ pytest -v test_add_variety2.py::test_add_c
test session starts

collected 4 items

test add variety2.py::test add c[Task
test add variety2.py::test add c[Task
test add variety2.py::test add c[Task
test add variety2.py::test add c[Task

sleep,None,True)] PASSED
wake,brian,False)] PASSED
breathe,BRIAN,True)] PASSED
exercise,BrIaN,False)] PASSED

—_— e~~~

4 passed in 0.04 seconds

With parametrized functions, you get to run that function multiple times. But
with parametrized fixtures, every test function that uses that fixture will be
called multiple times. Very powerful.

Parametrizing Fixtures in the Tasks Project

Now, let’s see how we can use parametrized fixtures in the Tasks project. So
far, we used TinyDB for all of the testing. But we want to keep our options
open until later in the project. Therefore, any code we write, and any tests
we write, should work with both TinyDB and with MongoDB.

The decision (in the code) of which database to use is isolated to the
start_tasks_db() call in the tasks db _session fixture:

ch3/b/tasks_proj/tests/conftest.py
import pytest

import tasks

from tasks import Task

@pytest.fixture(scope='session')

def tasks db session(tmpdir factory):
"""Connect to db before tests, disconnect after."""
temp dir = tmpdir_ factory.mktemp('temp')
tasks.start tasks db(str(temp dir), 'tiny')
yield
tasks.stop_tasks db()

@pytest.fixture()

def tasks_db(tasks_db_session):
"""An empty tasks db."""
tasks.delete all()

http://media.pragprog.com/titles/bopytest/code/ch3/b/tasks_proj/tests/conftest.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 3. pytest Fixtures ® 68

The db_type parameter in the call to start_tasks_db() isn’t magic. It just ends up
switching which subsystem gets to be responsible for the rest of the database
interactions:

tasks_proj/src/tasks/api.py
def start tasks db(db path, db type): # type: (str, str) -> None
"""Connect API functions to a db."""
if not isinstance(db path, string types):
raise TypeError('db path must be a string')
global tasksdb
if db_type == 'tiny':
import tasks.tasksdb tinydb
_tasksdb = tasks.tasksdb_tinydb.start_tasks_db(db_path)
elif db_type == 'mongo':
import tasks.tasksdb pymongo
_tasksdb = tasks.tasksdb pymongo.start tasks db(db path)
else:
raise ValueError("db type must be a 'tiny' or 'mongo'")

To test MongoDB, we need to run all the tests with db_type set to mongo. A small
change does the trick:

ch3/c/tasks_proj/tests/conftest.py
import pytest

import tasks

from tasks import Task

#@pytest. fixture(scope='session', params=['tiny',])
@pytest.fixture(scope='session', params=['tiny', 'mongo'])
def tasks db session(tmpdir factory, request):
"""Connect to db before tests, disconnect after."""
temp dir = tmpdir_ factory.mktemp('temp')
tasks.start tasks db(str(temp dir), request.param)
yield # this is where the testing happens
tasks.stop tasks db()

@pytest.fixture()

def tasks db(tasks db session):
"""An empty tasks db."""
tasks.delete all()

Here I added params=['tiny','mongo'] to the fixture decorator. I added request to the
parameter list of temp_db, and I set db_type to request.param instead of just picking
'tiny' or 'mongo’.

When you set the --verbose or -v flag with pytest running parametrized tests
or parametrized fixtures, pytest labels the different runs based on the value
of the parametrization. And because the values are already strings, that
works great.

http://media.pragprog.com/titles/bopytest/code/tasks_proj/src/tasks/api.py
http://media.pragprog.com/titles/bopytest/code/ch3/c/tasks_proj/tests/conftest.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Exercises ® 69

Installing MongoDB
To follow along with MongoDB testing, make sure MongoDB and
pymongo are installed. I've been testing with the community edition

| is installed with pip—pip install pymongo. However, using MongoDB is
not necessary to follow along with the rest of the book; it’s used in
this example and in a debugger example in Chapter 7.

Here’s what we have so far:

$ cd /path/to/code/ch3/c/tasks_proj
$ pip install pymongo
$ pytest -v --tb=no

test session starts

collected 92 items

test add.py::test add returns valid id[tiny] PASSED
test add.py::test added task has id set[tiny] PASSED
test add.py::test add increases count[tiny] PASSED
test add variety.py::test add 1[tiny] PASSED

test add variety.py::test add 2[tiny-task®@] PASSED
test add variety.py::test add 2[tiny-taskl] PASSED

test add.py::test add returns valid id[mongo] FAILED
test add.py::test added task has id set[mongo] FAILED
test add.py::test add increases count[mongo] PASSED
test add variety.py::test add 1[mongo] FAILED

test add variety.py::test add 2[mongo-taskO] FAILED

============= 42 failed, 50 passed in 4.94 seconds =============

Hmm. Bummer. Looks like we’ll need to do some debugging before we let
anyone use the Mongo version. You'll take a look at how to debug this in pdb:

Exercises

1. Create a test file called test fixtures.py.

2. Write a few data fixtures—functions with the @pytest.fixture() decorator—that
return some data. Perhaps a list, or a dictionary, or a tuple.

For each fixture, write at least one test function that uses it.
Write two tests that use the same fixture.

Run pytest --setup-show test fixtures.py. Are all the fixtures run before every test?

o o~ W

Add scope='module' to the fixture from Exercise 4.

https://www.mongodb.com/download-center
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 3. pytest Fixtures ® 70

7. Re-run pytest --setup-show test_fixtures.py. What changed?
8. For the fixture from Exercise 6, change return <data> to yield <data>.
9. Add print statements before and after the yield.

10. Run pytest -s -v test_fixtures.py. Does the output make sense?

What’'s Next

The pytest fixture implementation is flexible enough to use fixtures like
building blocks to build up test setup and teardown, and to swap in and out
different chunks of the system (like swapping in Mongo for TinyDB). Because
fixtures are so flexible, I use them heavily to push as much of the setup of
my tests into fixtures as I can.

In this chapter, you looked at pytest fixtures you write yourself, as well as a
couple of builtin fixtures, tmpdir and tmpdir factory. You’'ll take a closer look at
the builtin fixtures in the next chapter.

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

CHAPTER4

Builtin Fixtures

In the previous chapter, you looked at what fixtures are, how to write them, and
how to use them for test data as well as setup and teardown code. You also
used conftest.py for sharing fixtures between tests in multiple test files. By the
end of Chapter 3, pytest Fixtures, on page 49, the Tasks project had these fix-
tures: tasks_db_session, tasks just_a_few, tasks_mult_per_owner, tasks_db, db_with_3_tasks, and
db_with_multi_per_owner defined in conftest.py to be used by any test function in the

Tasks project that needed them.

Reusing common fixtures is such a good idea that the pytest developers
included some commonly needed fixtures with pytest. You've already seen tmpdir
and tmpdir_factory in use by the Tasks project in Changing Scope for Tasks Project

The builtin fixtures that come prepackaged with pytest can help you do some
pretty useful things in your tests easily and consistently. For example, in
addition to handling temporary files, pytest includes builtin fixtures to access
command-line options, communicate between tests sessions, validate output
streams, modify environmental variables, and interrogate warnings. The
builtin fixtures are extensions to the core functionality of pytest. Let’s now
take a look at several of the most often used builtin fixtures one by one.

Using tmpdir and tmpdir_factory

The tmpdir and tmpdir_factory builtin fixtures are used to create a temporary file
system directory before your test runs, and remove the directory when your
test is finished. In the Tasks project, we needed a directory to store the tem-
porary database files used by MongoDB and TinyDB. However, because we
want to test with temporary databases that don’t survive past a test session,
we used tmpdir and tmpdir factory to do the directory creation and cleanup for us.

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 4. Builtin Fixtures ® 72

If you're testing something that reads, writes, or modifies files, you can use
tmpdir to create files or directories used by a single test, and you can use
tmpdir_factory when you want to set up a directory for many tests.

The tmpdir fixture has function scope, and the tmpdir factory fixture has session
scope. Any individual test that needs a temporary directory or file just for the
single test can use tmpdir. This is also true for a fixture that is setting up a
directory or file that should be recreated for each test function.

Here’s a simple example using tmpdir:

ch4/test_tmpdir.py
def test tmpdir(tmpdir)
tmpdir already has a path name associated with it
join() extends the path to include a filename
the file is created when it's written to
a file = tmpdir.join('something.txt")
you can create directories
a sub dir = tmpdir.mkdir('anything')
you can create files in directories (created when written)
another file = a sub dir.join('something else.txt"')

this write creates 'something.txt'
a file.write('contents may settle during shipping')

this write creates 'anything/something else.txt'
another file.write('something different')

you can read the files as well
assert a file.read() == 'contents may settle during shipping'
assert another file.read() == 'something different'

The value returned from tmpdir is an object of type py.path.local. This seems like
everything we need for temporary directories and files. However, there’s one
gotcha. Because the tmpdir fixture is defined as function scope, you can't use
tmpdir to create folders or files that should stay in place longer than one test
function. For fixtures with scope other than function (class, module, session),
tmpdir_factory is available.

The tmpdir_factory fixture is a lot like tmpdir, but it has a different interface. As
discussed in Specifying Fixture Scope, on page 56, function scope fixtures run
once per test function, module scope fixtures run once per module, class
scope fixtures run once per class, and test scope fixtures run once per session.
Therefore, resources created in session scope fixtures have a lifetime of the

entire session.

1. http://py.readthedocs.io/en/latest/path.html

http://media.pragprog.com/titles/bopytest/code/ch4/test_tmpdir.py
http://py.readthedocs.io/en/latest/path.html
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Using tmpdir and tmpdir_factory ¢ 73

To see how similar tmpdir and tmpdir_factory are, I'll modify the tmpdir example
just enough to use tmpdir_factory instead:

ch4/test_tmpdir.py

def test tmpdir factory(tmpdir factory):
you should start with making a directory
a_dir acts like the object returned from the tmpdir fixture
a dir = tmpdir factory.mktemp('mydir')

base temp will be the parent dir of ‘'mydir'

you don't have to use getbasetemp()

using it here just to show that it's available
base temp = tmpdir factory.getbasetemp()
print('base:', base temp)

the rest of this test looks the same as the 'test tmpdir()'
example except I'm using a dir instead of tmpdir

a file = a dir.join('something.txt"')
a sub dir = a dir.mkdir('anything')
another_file = a_sub_dir.join('something else. txt")

a file.write('contents may settle during shipping')
another_file.write('something different')

assert a_file.read() == 'contents may settle during shipping'
assert another file.read() == 'something different'

The first line uses mktemp('mydir') to create a directory and saves it in a_dir. For
the rest of the function, you can use a_dir just like the tmpdir returned from
the tmpdir fixture.

In the second line of the tmpdir_factory example, the getbasetemp() function returns
the base directory used for this session. The print statement is in the example
so you can see where the directory is on your system. Let’s see where it is:

$ cd /path/to/code/ch4

$ pytest -q -s test_tmpdir.py::test_tmpdir_factory

base: /private/var/folders/53/zv4j zc506x2xq25131gxvxm0000gn\
/T/pytest-of-okken/pytest-732

1 passed in 0.04 seconds

This base directory is system- and user-dependent, and pytest-NUM changes
with an incremented NUM for every session. The base directory is left alone
after a session, but pytest cleans them up and only the most recent few
temporary base directories are left on the system, which is great if you need
to inspect the files after a test run.

You can also specify your own base directory if you need to with pytest --
basetemp=mydir.

http://media.pragprog.com/titles/bopytest/code/ch4/test_tmpdir.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 4. Builtin Fixtures ¢ 74

Using Temporary Directories for Other Scopes

We get session scope temporary directories and files from the tmpdir_factory
fixture, and function scope directories and files from the tmpdir fixture. But
what about other scopes? What if we need a module or a class scope temporary
directory? To do this, we create another fixture of the scope we want and have
it use tmpdir_factory.

For example, suppose we have a module full of tests, and many of them need
to be able to read some data from a json file. We could put a module scope
fixture in either the module itself, or in a conftest.py file that sets up the data
file like this:

ch4/authors/conftest.py
"""Demonstrate tmpdir factory."""

import json
import pytest

@pytest.fixture(scope='module')
def author file json(tmpdir factory):
"""Write some authors to a data file."""
python author data = {
'Ned': {'City': 'Boston'},
'Brian': {'City': 'Portland'},
'Luciano': {'City': 'Sau Paulo'}
}
file = tmpdir factory.mktemp('data').join('author file.json')
print('file:{}'.format(str(file)))
with file.open('w') as f:

json.dump(python author data, f)
return file

The author file_json() fixture creates a temporary directory called data and creates
a file called author filejson within the data directory. It then writes the
python_author_data dictionary as json. Because this is a module scope fixture,
the json file will only be created once per module that has a test using it:

ch4/authors/test_authors.py
"""Some tests that use temp data files."""
import json

def test brian in portland(author file json):
"""A test that uses a data file."""
with author_file_json.open() as f:
authors = json.load(f)
assert authors['Brian']['City'] == 'Portland'

http://media.pragprog.com/titles/bopytest/code/ch4/authors/conftest.py
http://media.pragprog.com/titles/bopytest/code/ch4/authors/test_authors.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Using pytestconfig ® 75

def test all have cities(author file json):
"""Same file is used for both tests."""
with author file json.open() as f:
authors = json.load(f)
for a in authors:
assert len(authors[al['City']) > 0

Both tests will use the same json file. If one test data file works for multiple
tests, there’s no use recreating it for both.

Using pytestconfig

With the pytestconfig builtin fixture, you can control how pytest runs through
command-line arguments and options, configuration files, plugins, and the
directory from which you launched pytest. The pytestconfig fixture is a shortcut
to request.config, and is sometimes referred to in the pytest documentation as
“the pytest config object.”

To see how pytestconfig works, you’ll look at how to add a custom command-
line option and read the option value from within a test. You can read the
value of command-line options directly from pytestconfig, but to add the option
and have pytest parse it, you need to add a hook function. Hook functions,
which I cover in more detail in Chapter 5, Plugins, on page 95, are another
way to control how pytest behaves and are used frequently in plugins. How-
ever, adding a custom command-line option and reading it from pytestconfig is

common enough that I want to cover it here.

We'll use the pytest hook pytest addoption to add a couple of options to the
options already available in the pytest command line:

ch4/pytestconfig/conftest.py
def pytest addoption(parser):
parser.addoption("--myopt", action="store true",
help="some boolean option")
parser.addoption("--foo", action="store", default="bar",
help="foo: bar or baz")

Adding command-line options via pytest_addoption should be done via plugins
or in the conftest.py file at the top of your project directory structure. You
shouldn’t do it in a test subdirectory.

The options --myopt and --foo <value> were added to the previous code, and the
help string was modified, as shown here:

$ cd /path/to/code/ch4/pytestconfig

$ pytest --help
usage: pytest [options] [file or dir] [file or dir] [...]

http://media.pragprog.com/titles/bopytest/code/ch4/pytestconfig/conftest.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 4. Builtin Fixtures ¢ 76

custom options:
--myopt some boolean option
--foo=F00 foo: bar or baz

Now we can access those options from a test:

ch4/pytestconfig/test_config.py
import pytest

def test option(pytestconfig):
print('"foo" set to:', pytestconfig.getoption('foo'))
print('"myopt" set to:', pytestconfig.getoption('myopt'))

Let’s see how this works:

$ pytest -s -q test_config.py::test_option
"foo" set to: bar
"myopt" set to: False

1 passed in 0.01 seconds

$ pytest -s -q --myopt test_config.py::test_option
"foo" set to: bar

"myopt" set to: True

1 passed in 0.01 seconds

$ pytest -s -q --myopt --foo baz test_config.py::test_option
"foo" set to: baz

"myopt" set to: True

1 passed in 0.01 seconds

Because pytestconfig is a fixture, it can also be accessed from other fixtures.
You can make fixtures for the option names, if you like, like this:

ch4/pytestconfig/test_config.py
@pytest.fixture()
def foo(pytestconfig):

return pytestconfig.option.foo

@pytest.fixture()
def myopt(pytestconfig):
return pytestconfig.option.myopt

def test fixtures for options(foo, myopt):
print('"foo" set to:', foo)
print('"myopt" set to:', myopt)

You can also access builtin options, not just options you add, as well as
information about how pytest was started (the directory, the arguments, and
SO on).

http://media.pragprog.com/titles/bopytest/code/ch4/pytestconfig/test_config.py
http://media.pragprog.com/titles/bopytest/code/ch4/pytestconfig/test_config.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Using cache ¢ 77

Here’s an example of a few configuration values and options:

ch4/pytestconfig/test_config.py
def test pytestconfig(pytestconfig):

print('args :', pytestconfig.args)

print('inifile :', pytestconfig.inifile)
print('invocation dir :', pytestconfig.invocation dir)
print('rootdir :', pytestconfig.rootdir)

print('-k EXPRESSION :', pytestconfig.getoption('keyword'))
print('-v, --verbose :', pytestconfig.getoption('verbose'))
print('-q, --quiet :', pytestconfig.getoption('quiet'))
print('-1, --showlocals:', pytestconfig.getoption('showlocals'))
print('--tb=style :', pytestconfig.getoption('tbstyle'))

You'll use pytestconfig again when I demonstrate ini files in Chapter 6, Configu-
ration, on page 113.

Using cache

Usually we testers like to think about each test as being as independent as
possible from other tests. We want to make sure order dependencies don’t
creep in. We want to be able to run or rerun any test in any order and get the
same result. We also want test sessions to be repeatable and to not change
behavior based on previous test sessions.

However, sometimes passing information from one test session to the next
can be quite useful. When we do want to pass information to future test ses-
sions, we can do it with the cache builtin fixture.

The cache fixture is all about storing information about one test session and
retrieving it in the next. A great example of using the powers of cache for good
is the builtin functionality of --last-failed and --failed-first. Let’s take a look at how
the data for these flags is stored using cache.

Here’s the help text for the --last-failed and --failed-first options, as well as a couple
of cache options:

$ pytest --help

--1f, --last-failed rerun only the tests that failed at the last run (or
all if none failed)

--ff, --failed-first run all tests but run the last failures first. This
may re-order tests and thus lead to repeated fixture
setup/teardown

--cache-show show cache contents, don't perform collection or tests

--cache-clear remove all cache contents at start of test run.

http://media.pragprog.com/titles/bopytest/code/ch4/pytestconfig/test_config.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 4. Builtin Fixtures ¢ 78

To see these in action, we’ll use these two tests:

ch4/cache/test_pass_fail.py
def test this passes():
assert 1 ==

def test this fails():
assert 1 ==

Let’s run them using --verbose to see the function names, and -tb=no to hide
the stack trace:

$ cd /path/to/code/ch4/cache
$ pytest --verbose --tb=no test_pass_fail.py
test session starts

collected 2 items

test pass fail.py::test this passes PASSED
test pass fail.py::test this fails FAILED

============ 1 failed, 1 passed in 0.05 seconds =============

If you run them again with the --ff or --failed-first flag, the tests that failed previ-
ously will be run first, followed by the rest of the session:

$ pytest --verbose --tb=no --ff test_pass_fail.py
test session starts
run-last-failure: rerun last 1 failures first
collected 2 items

test _pass_fail.py::test this fails FAILED
test pass fail.py::test this passes PASSED

============] failed, 1 passed in 0.04 seconds =============
Or you can use -If or --last-failed to just run the tests that failed the last time:

$ pytest --verbose --tb=no --1f test_pass_fail.py
test session starts
run-last-failure: rerun last 1 failures
collected 2 items

test _pass_fail.py::test this fails FAILED

1 tests deselected
========== 1 failed, 1 deselected in 0.05 seconds ===========

Before we look at how the failure data is being saved and how you can use
the same mechanism, let’s look at another example that makes the value of
-If and --ff even more obvious.

Here’s a parametrized test with one failure:

http://media.pragprog.com/titles/bopytest/code/ch4/cache/test_pass_fail.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Using cache ¢ 79

ch4/cache/test_few_failures.py
"""Demonstrate -1f and -ff with failing tests."""

import pytest
from pytest import approx

testdata = [
x, y, expected
(1.01, 2.01, 3.02),
(1e25, 1e23, 1.1e25),
(1.23, 3.21, 4.44),
(0.1, 0.2, 0.3),
(1e25, 1le24, 1.1le25)

1

@pytest.mark.parametrize("x,y,expected", testdata)
def test a(x, y, expected):

"""Demo approx()."""

sum_ =X + Yy

assert sum_ == approx(expected)

And the output:

$ cd /path/to/code/ch4/cache

$ pytest -q test_few_failures.py
F...

FAILURES
test_a[le+25-1e+23-1.1e+25]

x = le+25, y = le+23, expected = 1.le+25

@pytest.mark.parametrize("x,y,expected", testdata)
def test a(x,y,expected):

sum_ = X + Yy
> assert sum_ == approx(expected)

E assert 1.0le+25 == 1.1le+25 *+ 1.1le+19

E + where 1.1e+25 + 1.1e+19 = approx(1l.le+25)

test few failures.py:17: AssertionError
1 failed, 4 passed in 0.06 seconds

Maybe you can spot the problem right off the bat. But let’s pretend the test
is longer and more complicated, and it’s not obvious what’s wrong. Let’s run
the test again to see the failure again. You can specify the test case on the
command line:

$ pytest -q "test few failures.py::test a[le+25-1e+23-1.1le+25]"

If you don’t want to copy/paste or there are multiple failed cases you’d like
to rerun, -If is much easier. And if you're really debugging a test failure,
another flag that might make things easier is --showlocals, or - for short:

http://media.pragprog.com/titles/bopytest/code/ch4/cache/test_few_failures.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 4. Builtin Fixtures ® 80

$ pytest -q --1f -1 test_few_failures.py
F

FAILURES
test_a[le+25-1e+23-1.1e+25]

x = le+25, y = le+23, expected = 1.1le+25

@pytest.mark.parametrize("x,y,expected", testdata)
def test a(x,y,expected):

sum_ = X + Yy
> assert sum_ == approx(expected)

E assert 1.0le+25 == 1.1le+25 = 1.1le+19

E + where 1.1e+25 * 1.1e+19 = approx(1l.le+25)
expected = 1.le+25

sum_ = 1.01e+25

X = le+25

y = le+23

test few failures.py:17: AssertionError
4 tests deselected
1 failed, 4 deselected in 0.05 seconds

The reason for the failure should be more obvious now.

To pull off the trick of remembering what test failed last time, pytest stores
test failure information from the last test session. You can see the stored
information with --cache-show:

$ pytest --cache-show
test session starts
————————————————————————— cache values -------------------------
cache/lastfailed contains:

{'test few failures.py::test a[le+25-1e+23-1.1e+25]': True}

no tests ran in 0.00 seconds

Or you can look in the cache dir:

$ cat .cache/v/cache/lastfailed

{
"test few failures.py::test a[le+25-1e+23-1.1le+25]": true

}
You can pass in --clear-cache to clear the cache before the session.

The cache can be used for more than just --If and --ff. Let’'s make a fixture that
records how long tests take, saves the times, and on the next run, reports an
error on tests that take longer than, say, twice as long as last time.

The interface for the cache fixture is simply

cache.get(key, default)
cache.set(key, value)

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Using cache * 81

By convention, key names start with the name of your application or plugin,
followed by a /, and continuing to separate sections of the key name with /’s.
The value you store can be anything that is convertible to json, since that’s
how it’s represented in the .cache directory.

Here’s our fixture used to time tests:

ch4/cache/test_slower.py
@pytest.fixture(autouse=True)
def check duration(request, cache):
key = 'duration/' + request.node.nodeid.replace(':', ' ')
nodeid's can have colons
keys become filenames within .cache
replace colons with something filename safe
start time = datetime.datetime.now()
yield
stop time = datetime.datetime.now()
this duration = (stop time - start time).total seconds()
last duration = cache.get(key, None)
cache.set(key, this duration)
if last duration is not None:
errorstring = "test duration over 2x last duration"
assert this_duration <= last_duration * 2, errorstring

The fixture is autouse, so it doesn’t need to be referenced from the test. The
request object is used to grab the nodeid for use in the key. The nodeid is a unique
identifier that works even with parametrized tests. We prepend the key with
'duration/' to be good cache citizens. The code above yield runs before the test
function; the code after yield happens after the test function.

Now we need some tests that take different amounts of time:

ch4/cache/test_slower.py

@pytest.mark.parametrize('i', range(5))

def test slow stuff(i):
time.sleep(random. random())

Because you probably don’t want to write a bunch of tests for this, I used
random and parametrization to easily generate some tests that sleep for a
random amount of time, all shorter than a second. Let’s see it run a couple
of times:

$ cd /path/to/code/ch4/cache

$ pytest -q --cache-clear test_slower.py
5 passed in 2.10 seconds

$ pytest -q --tb=line test_slower.py
.E..E.E.

http://media.pragprog.com/titles/bopytest/code/ch4/cache/test_slower.py
http://media.pragprog.com/titles/bopytest/code/ch4/cache/test_slower.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

ERRORS

Chapter 4. Builtin Fixtures ® 82

ERROR at teardown of test slow stuff[O]
E AssertionError: test duration over 2x last duration
assert 0.954312 <= (0.380536 * 2)
ERROR at teardown of test slow stuff[2]
E AssertionError: test duration over 2x last duration
assert 0.821745 <= (0.152405 * 2)
ERROR at teardown of test slow stuff[3]
E AssertionError: test duration over 2x last duration
assert 1.001032 <= (0.36674 * 2)
5 passed, 3 error in 3.83 seconds

Well, that was fun. Let’s see what’s in the cache:

$ pytest -q --cache-show
------------------------- cache values ----------------
cache/lastfailed contains:
{'test slower.py::test slow stuff[@]': True,
"test slower.py::test slow stuff[2]': True,
'test slower.py::test slow stuff[3]': True}
duration/test slower.py test slow stuff[@] contains:
0.954312
duration/test slower.py test slow stuff[l] contains:
0.915539
duration/test slower.py test slow stuff[2] contains:
0.821745
duration/test slower.py test slow stuff[3] contains:
1.001032
duration/test slower.py test slow stuff[4] contains:
0.031884

no tests ran in 0.01 seconds

You can easily see the duration data separate from the cache data due to the
prefixing of cache data names. However, it’s interesting that the lastfailed
functionality is able to operate with one cache entry. Our duration data is taking
up one cache entry per test. Let’s follow the lead of lastfailed and fit our data

into one entry.

We are reading and writing to the cache for every test.

We could split up the

fixture into a function scope fixture to measure durations and a session scope

fixture to read and write to the cache. However, if we

do this, we can’t use

the cache fixture because it has function scope. Fortunately, a quick peek at
the implementation on GitHub® reveals that the cache fixture is simply
returning request.config.cache. This is available in any scope.

2. https://github.com/pytest-dev/pytest/blob/master/_pytest/cacheprovider.py

https://github.com/pytest-dev/pytest/blob/master/_pytest/cacheprovider.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Using cache ¢ 83

Here’s one possible refactoring of the same functionality:

ch4/cache/test_slower_2.py
Duration = namedtuple('Duration', ['current', 'last'])

@pytest.fixture(scope='session')
def duration cache(request):

key = 'duration/testdurations'
d = Duration({}, request.config.cache.get(key, {}))
yield d

request.config.cache.set(key, d.current)

@pytest.fixture(autouse=True)
def check duration(request, duration cache):
d = duration cache
nodeid = request.node.nodeid
start time = datetime.datetime.now()
yield
duration = (datetime.datetime.now() - start time).total seconds()
d.current[nodeid] = duration
if d.last.get(nodeid, None) is not None:
errorstring = "test duration over 2x last duration"
assert duration <= (d.last[nodeid] * 2), errorstring

The duration_cache fixture is session scope. It reads the previous entry or an empty
dictionary if there is no previous cached data, before any tests are run. In the
previous code, we saved both the retrieved dictionary and an empty one in a
namedtuple called Duration with accessors current and last. We then passed that
namedtuple to the check_duration fixture, which is function scope and runs for every
test function. As the test runs, the same namedtuple is passed to each test, and
the times for the current test runs are stored in the d.current dictionary. At the
end of the test session, the collected current dictionary is saved in the cache.

After running it a couple of times, let’s look at the saved cache:

$ pytest -q --cache-clear test_slower_2.py
5 passed in 2.80 seconds
$ pytest -q --tb=no test_slower_2.py
...E..E
5 passed, 2 error in 1.97 seconds
$ pytest -q --cache-show
————————————————————————— cache values ----------mmmmmmmmo
cache/lastfailed contains:
{'test slower 2.py::test slow stuff[2]': True,
'test slower 2.py::test slow stuff[4]': True}
duration/testdurations contains:
{'test slower 2.py::test slow stuff[0]': 0.145404,
'test_slower_2.py::test slow stuff[1l]': 0.199585,
'test slower 2.py::test slow stuff[2]': 0.696492,

http://media.pragprog.com/titles/bopytest/code/ch4/cache/test_slower_2.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 4. Builtin Fixtures ¢ 84

'test slower 2.py::test slow stuff[3]': 0.202118,
'test slower 2.py::test slow stuff[4]': 0.657917}

no tests ran in 0.01 seconds

That looks better.

Using capsys

The capsys builtin fixture provides two bits of functionality: it allows you to
retrieve stdout and stderr from some code, and it disables output capture tem-
porarily. Let’s take a look at retrieving stdout and stderr.

Suppose you have a function to print a greeting to stdout:

ch4/cap/test_capsys.py
def greeting(name):
print('Hi, {}'.format(name))

You can't test it by checking the return value. You have to test stdout somehow.
You can test the output by using capsys:

ch4/cap/test_capsys.py

def test greeting(capsys):
greeting('Earthling')
out, err = capsys.readouterr()
assert out == 'Hi, Earthling\n'
assert err == "'

greeting('Brian')

greeting('Nerd")

out, err = capsys.readouterr()
assert out == 'Hi, Brian\nHi, Nerd\n'
assert err == "'

The captured stdout and stderr are retrieved from capsys.redouterr(). The return
value is whatever has been captured since the beginning of the function, or
from the last time it was called.

The previous example only used stdout. Let’s look at an example using stderr:

ch4/cap/test_capsys.py
def yikes(problem):
print('YIKES! {}'.format(problem), file=sys.stderr)

def test yikes(capsys):
yikes('Out of coffee!"')
out, err = capsys.readouterr()
assert out == "'
assert 'Out of coffee!' in err

http://media.pragprog.com/titles/bopytest/code/ch4/cap/test_capsys.py
http://media.pragprog.com/titles/bopytest/code/ch4/cap/test_capsys.py
http://media.pragprog.com/titles/bopytest/code/ch4/cap/test_capsys.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Using monkeypatch ¢ 85

pytest usually captures the output from your tests and the code under test.
This includes print statements. The captured output is displayed for failing
tests only after the full test session is complete. The -s option turns off this
feature, and output is sent to stdout while the tests are running. Usually this
works great, as it’s the output from the failed tests you need to see in order
to debug the failures. However, you may want to allow some output to make
it through the default pytest output capture, to print some things without
printing everything. You can do this with capsys. You can use capsys.disabled()
to temporarily let output get past the capture mechanism.

Here’s an example:

ch4/cap/test_capsys.py
def test capsys disabled(capsys):
with capsys.disabled():
print('\nalways print this')
print('normal print, usually captured"')

Now, 'always print this' will always be output:
$ cd /path/to/code/ch4/cap
$ pytest -q test_capsys.py::test_capsys_disabled

always print this

1 passed in 0.01 seconds
$ pytest -q -s test_capsys.py::test_capsys_disabled

always print this
normal print, usually captured

1 passed in 0.00 seconds

As you can see, always print this shows up with or without output capturing, since
it’s being printed from within a with capsys.disabled() block. The other print state-
ment is just a normal print statement, so normal print, usually captured is only seen
in the output when we pass in the -s flag, which is a shortcut for --capture=no,
turning off output capture.

Using monkeypatch

A “monkey patch” is a dynamic modification of a class or module during
runtime. During testing, “monkey patching” is a convenient way to take over
part of the runtime environment of the code under test and replace either
input dependencies or output dependencies with objects or functions that
are more convenient for testing. The monkeypatch builtin fixture allows you to
do this in the context of a single test. And when the test ends, regardless of
pass or fail, the original unpatched is restored, undoing everything changed

http://media.pragprog.com/titles/bopytest/code/ch4/cap/test_capsys.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 4. Builtin Fixtures ® 86

by the patch. It’s all very hand-wavy until we jump into some examples. After
looking at the API, we’ll look at how monkeypatch is used in test code.

The monkeypatch fixture provides the following functions:
e setattr(target, name, value=<notset>, raising=True): Set an attribute.
¢ delattr(target, name=<notset>, raising=True): Delete an attribute.
e setitem(dic, name, value): Set a dictionary entry.
e delitem(dic, name, raising=True): Delete a dictionary entry.
e setenv(name, value, prepend=None): Set an environmental variable.
e delenv(name, raising=True): Delete an environmental variable.

e syspath_prepend(path): Prepend path to sys.path, which is Python’s list of import
locations.

e chdir(path): Change the current working directory.

The raising parameter tells pytest whether or not to raise an exception if the
item doesn’t already exist. The prepend parameter to setenv() can be a character.
If it is set, the value of the environmental variable will be changed to value +
prepend + <old value>.

To see monkeypatch in action, let’s look at code that writes a dot configuration
file. The behavior of some programs can be changed with preferences and
values set in a dot file in a user’s home directory. Here’s a bit of code that
reads and writes a cheese preferences file:

ch4/monkey/cheese.py
import os
import json

def read cheese preferences():
full path = os.path.expanduser('~/.cheese.json')
with open(full path, 'r') as f:
prefs = json.load(f)
return prefs

def write cheese preferences(prefs):
full path = os.path.expanduser('~/.cheese.json')
with open(full path, 'w') as f:
json.dump(prefs, f, indent=4)

def write default cheese preferences():
write cheese preferences(default prefs)

http://media.pragprog.com/titles/bopytest/code/ch4/monkey/cheese.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Using monkeypatch © 87

_default prefs = {

'slicing': ['manchego', 'sharp cheddar'],
'spreadable': ['Saint Andre', 'camembert',
'bucheron', 'goat', 'humbolt fog', 'cambozola'],

'salads': ['crumbled feta'l]

}

Let's take a look at how we could test write_default_cheese_preferences(). It’'s a
function that takes no parameters and doesn’t return anything. But it does
have a side effect that we can test. It writes a file to the current user’s home
directory.

One approach is to just let it run normally and check the side effect. Suppose
I already have tests for read_cheese_preferences() and I trust them, so I can use
them in the testing of write_default_cheese_preferences():

ch4/monkey/test_cheese.py

def test def prefs full():
cheese.write default cheese preferences()
expected = cheese. default prefs
actual = cheese.read cheese preferences()
assert expected == actual

One problem with this is that anyone who runs this test code will overwrite
their own cheese preferences file. That’s not good.

If a user has HOME set, os.path.expanduser() replaces ~ with whatever is in a user’s
HOME environmental variable. Let’s create a temporary directory and redirect
HOME to point to that new temporary directory:

ch4/monkey/test_cheese.py

def test def prefs change home(tmpdir, monkeypatch):
monkeypatch.setenv('HOME', tmpdir.mkdir('home'))
cheese.write default cheese preferences()
expected = cheese. default prefs
actual = cheese.read cheese preferences()
assert expected == actual

This is a pretty good test, but relying on HOME seems a little operating-system
dependent. And a peek into the documentation online for expanduser() has some
troubling information, including “On Windows, HOME and USERPROFILE
will be used if set, otherwise a combination of....”*> Dang. That may not be
good for someone running the test on Windows. Maybe we should take a dif-
ferent approach.

3. https://docs.python.org/3.6/library/os.path.html#os.path.expanduser

http://media.pragprog.com/titles/bopytest/code/ch4/monkey/test_cheese.py
http://media.pragprog.com/titles/bopytest/code/ch4/monkey/test_cheese.py
https://docs.python.org/3.6/library/os.path.html#os.path.expanduser
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 4. Builtin Fixtures ® 88

Instead of patching the HOME environmental variable, let’s patch expanduser:

ch4/monkey/test_cheese.py
def test def prefs change expanduser(tmpdir, monkeypatch):
fake home dir = tmpdir.mkdir('home")
monkeypatch.setattr(cheese.os.path, 'expanduser',
(Lambda x: x.replace('~', str(fake home dir))))
cheese.write default cheese preferences()
expected = cheese. default prefs
actual = cheese.read cheese preferences()
assert expected == actual

During the test, anything in the cheese module that calls os.path.expanduser() gets
our lambda expression instead. This little function uses the regular expression
module function re.sub to replace ~ with our new temporary directory. Now
we’'ve used setenv() and setattr() to do patching of environmental variables and
attributes. Next up, setitem().

Let’s say we're worried about what happens if the file already exists. We want
to be sure it gets overwritten with the defaults when write_default_cheese_prefer-
ences() is called:

ch4/monkey/test_cheese.py
def test def prefs change defaults(tmpdir, monkeypatch):
write the file once
fake home dir = tmpdir.mkdir('home"')
monkeypatch.setattr(cheese.os.path, 'expanduser',
(Llambda x: x.replace('~', str(fake home dir))))
cheese.write default cheese preferences()
defaults before = copy.deepcopy(cheese. default prefs)

change the defaults

monkeypatch.setitem(cheese. default prefs, 'slicing', ['provolone'l)
monkeypatch.setitem(cheese. default prefs, 'spreadable', ['brie'])
monkeypatch.setitem(cheese. default prefs, 'salads', ['pepper jack'l)
defaults modified = cheese. default prefs

write it again with modified defaults
cheese.write default cheese preferences()

read, and check

actual = cheese.read cheese preferences()
assert defaults modified == actual

assert defaults modified != defaults before

Because _default_prefs is a dictionary, we can use monkeypatch.setitem() to change
dictionary items just for the duration of the test.

We've used setenv(), setattr(), and setitem(). The del forms are pretty similar. They
just delete an environmental variable, attribute, or dictionary item instead of
setting something. The last two monkeypatch methods pertain to paths.

http://media.pragprog.com/titles/bopytest/code/ch4/monkey/test_cheese.py
http://media.pragprog.com/titles/bopytest/code/ch4/monkey/test_cheese.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Using doctest_namespace ® 89

syspath_prepend(path) prepends a path to sys.path, which has the effect of putting
your new path at the head of the line for module import directories. One use
for this would be to replace a system-wide module or package with a stub
version. You can then use monkeypatch.syspath_prepend() to prepend the directory
of your stub version and the code under test will find the stub version first.

chdir(path) changes the current working directory during the test. This would
be useful for testing command-line scripts and other utilities that depend on
what the current working directory is. You could set up a temporary directory
with whatever contents make sense for your script, and then use monkey-
patch.chdir(the_tmpdir).

You can also use the monkeypatch fixture functions in conjunction with
unittest.mock to temporarily replace attributes with mock objects. You'll look at
that in Chapter 7, Using pytest with Other Tools, on page 125.

Using doctest_namespace

The doctest module is part of the standard Python library and allows you to
put little code examples inside docstrings for a function and test them to
make sure they work. You can have pytest look for and run doctest tests
within your Python code by using the --doctest-modules flag. With the
doctest_namespace builtin fixture, you can build autouse fixtures to add symbols
to the namespace pytest uses while running doctest tests. This allows doc-
strings to be much more readable. doctest namespace is commonly used to add
module imports into the namespace, especially when Python convention is
to shorten the module or package name. For instance, numpy is often
imported with import numpy as np.

Let’s play with an example. Let’s say we have a module named unneces-
sary_math.py with multiply() and divide() methods that we really want to make sure
everyone understands clearly. So we throw some usage examples in both the
file docstring and the docstrings of the functions:

ch4/dt/1/unnecessary_math.py

This module defines multiply(a, b) and divide(a, b).
>>> import unnecessary math as um
Here's how you use multiply:

>>> um.multiply(4, 3)
12

>>> um.multiply('a', 3)
‘gaa’

http://media.pragprog.com/titles/bopytest/code/ch4/dt/1/unnecessary_math.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 4. Builtin Fixtures ® 90

Here's how you use divide:

>>> um.divide(10, 5)
2.0

def multiply(a, b):

Returns a multiplied by b.
>>> um.multiply(4, 3)
12

>>> um.multiply('a', 3)
'aaa’

return a * b

def divide(a, b):

Returns a divided by b.

>>> um.divide(10, 5)
2.0

return a / b

Since the name unnecessary_math is long, we decide to use um instead by using
import unnecessary_math as um in the top docstring. The code in the docstrings of
the functions doesn’t include the import statement, but continue with the um
convention. The problem is that pytest treats each docstring with code as a
different test. The import in the top docstring will allow the first part to pass,
but the code in the docstrings of the functions will fail:

$ cd /path/to/code/ch4/dt/1
$ pytest -v --doctest-modules --tb=short unnecessary_math.py
test session starts

collected 3 items

unnecessary math.py::unnecessary math PASSED
unnecessary math.py::unnecessary math.divide FAILED
unnecessary math.py::unnecessary math.multiply FAILED

FAILURES
[doctest] unnecessary math.divide
031
032 Returns a divided by b.
033
034 >>> um.divide(10, 5)

UNEXPECTED EXCEPTION: NameError("name 'um' is not defined",)
Traceback (most recent call last):

File "<doctest unnecessary math.divide[0]>", line 1, in <module>

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Using doctest_namespace ® 91

NameError: name 'um' is not defined

/path/to/code/ch4/dt/1/unnecessary math.py:34: UnexpectedException
[doctest] unnecessary math.multiply

022

023 >>> um.multiply(4, 3)

UNEXPECTED EXCEPTION: NameError("name 'um' is not defined",)
Traceback (most recent call last):

File "<doctest unnecessary math.multiply[0]>", line 1, in <module>

NameError: name 'um' is not defined

/path/to/code/ch4/dt/1/unnecessary math.py:23: UnexpectedException
2 failed, 1 passed in 0.03 seconds

One way to fix it is to put the import statement in each docstring:

ch4/dt/2/unnecessary_math.py
def multiply(a, b):

Returns a multiplied by b.

>>> import unnecessary math as um
>>> um.multiply(4, 3)

12

>>> um.multiply('a', 3)

'aaa

return a * b

def divide(a, b):

Returns a divided by b.

>>> import unnecessary math as um
>>> um.divide(10, 5)
2.0

return a / b

This definitely fixes the problem:

$ cd /path/to/code/chd/dt/2
$ pytest -v --doctest-modules --tb=short unnecessary_math.py
test session starts

collected 3 items

unnecessary math.py::unnecessary math PASSED
unnecessary math.py::unnecessary math.divide PASSED
unnecessary math.py::unnecessary math.multiply PASSED

3 passed in 0.03 seconds

http://media.pragprog.com/titles/bopytest/code/ch4/dt/2/unnecessary_math.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 4. Builtin Fixtures ® 92

However, it also clutters the docstrings, and doesn’t add any real value to
readers of the code.

The builtin fixture doctest_ namespace, used in an autouse fixture at a top-level
conftest.py file, will fix the problem without changing the source code:

ch4/dt/3/conftest.py
import pytest
import unnecessary math

@pytest.fixture(autouse=True)
def add um(doctest namespace):

doctest namespace['um'] unnecessary math

This tells pytest to add the um name to the doctest_namespace and have it
be the value of the imported unnecessary_math module. With this in place in the
conftest.py file, any doctests found within the scope of this conftest.py file will
have the um symbol defined.

I'll cover running doctest from pytest more in Chapter7Usmg pytestwlth
Other Tools, on page 125.

Using recwarn

The recwarn builtin fixture is used to examine warnings generated by code
under test. In Python, you can add warnings that work a lot like assertions,
but are used for things that don’t need to stop execution. For example, suppose
we want to stop supporting a function that we wish we had never put into a
package but was released for others to use. We can put a warning in the code
and leave it there for a release or two:

ch4/test_warnings.py
import warnings
import pytest

def lame_function():
warnings.warn("Please stop using this", DeprecationWarning)
rest of function

We can make sure the warning is getting issued correctly with a test:

ch4/test_warnings.py
def test lame_function(recwarn):
lame_ function()

assert len(recwarn) == 1
w = recwarn.pop()
assert w.category == DeprecationWarning

assert str(w.message) == 'Please stop using this'

http://media.pragprog.com/titles/bopytest/code/ch4/dt/3/conftest.py
http://media.pragprog.com/titles/bopytest/code/ch4/test_warnings.py
http://media.pragprog.com/titles/bopytest/code/ch4/test_warnings.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Exercises ® 93

The recwarn value acts like a list of warnings, and each warning in the list has
a category, message, filename, and lineno defined, as shown in the code.

The warnings are collected at the beginning of the test. If that is inconvenient
because the portion of the test where you care about warnings is near the
end, you can use recwarn.clear() to clear out the list before the chunk of the test
where you do care about collecting warnings.

In addition to recwarn, pytest can check for warnings with pytest.warns():

ch4/test_warnings.py
def test lame function 2():
with pytest.warns(None) as warning list:
lame function()

assert len(warning list) ==1

w = warning list.pop()

assert w.category == DeprecationWarning

assert str(w.message) == 'Please stop using this'

The pytest.warns() context manager provides an elegant way to demark what
portion of the code you're checking warnings. The recwarn fixture and the
pytest.warns() context manager provide similar functionality, though, so the
decision of which to use is purely a matter of taste.

Exercises

1. In chd/cacheftest_slower.py, there is an autouse fixture called check_duration(). Copy
it into ch3/tasks_proj/tests/conftest.py.

2. Run the tests in Chapter 3.

3. For tests that are really fast, 2x really fast is still really fast. Instead of
2x, change the fixture to check for 0.1 second plus 2x the last duration.

4. Run pytest with the modified fixture. Do the results seem reasonable?

What’'s Next

In this chapter, you looked at many of pytest’s builtin fixtures. Next, you’ll
take a closer look at plugins. The nuance of writing large plugins could be a
book in itself; however, small custom plugins are a regular part of the pytest
ecosystem.

http://media.pragprog.com/titles/bopytest/code/ch4/test_warnings.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

CHAPTER 5

Plugins

As powerful as pytest is right out of the box, it gets even better when you add
plugins to the mix. The pytest code base is structured with customization
and extensions, and there are hooks available to allow modifications and
improvements through plugins.

It might surprise you to know that you've already written some plugins if
you've worked through the previous chapters in this book. Any time you put
fixtures and/or hook functions into a project’s top-level conftest.py file, you
created a local conftest plugin. It’s just a little bit of extra work to convert
these conftest.py files into installable plugins that you can share between
projects, with other people, or with the world.

We will start this chapter looking at where to look for third-party plugins.
Quite a few plugins are available, so there’s a decent chance someone has
already written the change you want to make to pytest. Since we will be
looking at open source plugins, if a plugin does almost what you want to
do but not quite, you can fork it, or use it as a reference for creating your
own plugin. While this chapter is about creating your own plugins, Appendix

possible.

In this chapter, you'll learn how to create plugins, and I'll point you in the
right direction to test, package, and distribute them. The full topic of Python
packaging and distribution is probably a book of its own, so we won’'t cover
everything. But you'll get far enough to be able to share plugins with your
team. I'll also discuss some shortcuts to getting PyPI-distributed plugins up
with the least amount of work.

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 5. Plugins ® 96

Finding Plugins

You can find third-party pytest plugins in several places. The plugins listed
in Appendix 3, Plugin Sampler Pack, on page 163 are all available for download

from PyPI. However, that’s not the only place to look for great pytest plugins.

https:/ /docs.pytest.org/en/latest/plugins.html
The main pytest documentation site has a page that talks about installing
and using pytest plugins, and lists a few common plugins.

https:/ /pypi.python.org
The Python Package Index (PyPI) is a great place to get lots of Python
packages, but it is also a great place to find pytest plugins. When looking
for pytest plugins, it should work pretty well to enter “pytest,” “pytest-,”
or “-pytest” into the search box, since most pytest plugins either start
with “pytest-,” or end in “-pytest.”

https:/ /github.com/ pytest-dev
The “pytest-dev” group on GitHub is where the pytest source code is kept.
It’s also where you can find some popular pytest plugins that are intended
to be maintained long-term by the pytest core team.

Installing Plugins
pytest plugins are installed with pip, just like other Python packages. However,
you can use pip in several different ways to install plugins.

Install from PyPI

As PyPl is the default location for pip, installing plugins from PyPI is the easiest
method. Let’s install the pytest-cov plugin:

$ pip install pytest-cov

This installs the latest stable version from PyPI.

Install a Particular Version from PyPI

If you want a particular version of a plugin, you can specify the version
after ‘=="

$ pip install pytest-cov==2.4.0

Install from a .tar.gz or .whl File

Packages on PyPI are distributed as zipped files with the extensions .tar.gz
and/or .whl. These are often referred to as “tar balls” and “wheels.” If you're

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Installing Plugins ¢ 97

having trouble getting pip to work with PyPI directly (which can happen with
firewalls and other network complications), you can download either the .tar.gz
or the .whl and install from that.

You don’t have to unzip or anything; just point pip at it:

$ pip install pytest-cov-2.4.0.tar.gz
or
$ pip install pytest_cov-2.4.0-py2.py3-none-any.whl

Install from a Local Directory

You can keep a local stash of plugins (and other Python packages) in a local
or shared directory in .targz or .whl format and use that instead of PyPI for
installing plugins:

$ mkdir some_plugins

$ cp pytest_cov-2.4.0-py2.py3-none-any.whl some_plugins/
$ pip install --no-index --find-links=./some_plugins/ pytest-cov

The --no-index tells pip to not connect to PyPI. The --find-links=./some_plugins/ tells
pip to look in the directory called some plugins. This technique is especially
useful if you have both third-party and your own custom plugins stored
locally, and also if you're creating new virtual environments for continuous
integration or with tox. (We'll talk about both tox and continuous integration
in Chapter 7, Using pytest with Other Tools, on page 125.)

Note that with the local directory install method, you can install multiple
versions and specify which version you want by adding == and the version
number:

$ pip install --no-index --find-links=./some_plugins/ pytest-cov==2.4.0

Install from a Git Repository

You can install plugins directly from a Git repository—in this case, GitHub:
$ pip install git+https://github.com/pytest-dev/pytest-cov

You can also specify a version tag:

$ pip install git+https://github.com/pytest-dev/pytest-cov@v2.4.0

Or you can specify a branch:

$ pip install git+https://github.com/pytest-dev/pytest-cov@master

Installing from a Git repository is especially useful if you're storing your own
work within Git, or if the plugin or plugin version you want isn't on PyPI.

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 5. Plugins © 98

Writing Your Own Plugins

Many third-party plugins contain quite a bit of code. That’s one of the reasons
we use them—to save us the time to develop all of that code ourselves.
However, for your specific coding domain, you’ll undoubtedly come up with
special fixtures and modifications that help you test. Even a handful of fix-
tures that you want to share between a couple of projects can be shared
easily by creating a plugin. You can share those changes with multiple
projects—and possibly the rest of the world—by developing and distributing
your own plugins. It's pretty easy to do so. In this section, we’ll develop a
small modification to pytest behavior, package it as a plugin, test it, and look
into how to distribute it.

Plugins can include hook functions that alter pytest’s behavior. Because
pytest was developed with the intent to allow plugins to change quite a bit
about the way pytest behaves, a lot of hook functions are available. The hook
functions for pytest are specified on the pytest documentation site.'

For our example, we’ll create a plugin that changes the way the test status
looks. We'll also include a command-line option to turn on this new behavior.
We're also going to add some text to the output header. Specifically, we’ll
change all of the FAILED status indicators to “OPPORTUNITY for improve-
ment,” change F to 0, and add “Thanks for running the tests” to the header.
We’ll use the --nice option to turn the behavior on.

To keep the behavior changes separate from the discussion of plugin
mechanics, we’ll make our changes in conftest.py before turning it into a dis-
tributable plugin. You don’t have to start plugins this way. But frequently,
changes you only intended to use on one project will become useful enough
to share and grow into a plugin. Therefore, we’ll start by adding functionality
to a conftest.py file, then, after we get things working in conftest.py, we’ll move
the code to a package.

Let's go back to the Tasks project. In Expecting Exceptions, on page 30, we
wrote some tests that made sure exceptions were raised if someone called an
API function incorrectly. Looks like we missed at least a few possible error

conditions.

1. http://doc.pytest.org/en/latest/ modules/ pytest/hookspec.html

http://doc.pytest.org/en/latest/_modules/_pytest/hookspec.html
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Writing Your Own Plugins ¢ 99

Here are a couple more tests:

ch5/a/tasks_proj/tests/func/test_api_exceptions.py
import pytest

import tasks

from tasks import Task

@pytest.mark.usefixtures('tasks db')
class TestAdd():
"""Tests related to tasks.add()."""

def test missing summary(self):
"""Should raise an exception if summary missing.
with pytest.raises(ValueError):
tasks.add(Task(owner="'bob"))

def test done not bool(self):
"""Should raise an exception if done is not a bool."""
with pytest.raises(ValueError):
tasks.add(Task(summary="'summary', done='True'))

Let’s run them to see if they pass:

$ cd /path/to/code/ch5/a/tasks_proj
$ pytest

test session starts

collected 57 items

tests/func/test add.py ...

tests/func/test add variety.pycciiiiiiiiiiiiiii,
tests/func/test add variety2.py
tests/func/test api exceptions.py .F.......
tests/func/test unique id.py .

tests/unit/test task.py

FAILURES
TestAdd.test done_not_bool

self = <func.test api exceptions.TestAdd object at 0x103a71a20>

def test done not bool(self):
"""Should raise an exception if done is not a bool."""
with pytest.raises(ValueError):
tasks.add(Task(summary="'summary', done='True'))
E Failed: DID NOT RAISE <class 'ValueError's>

tests/func/test api exceptions.py:20: Failed
=============] failed, 56 passed in 0.28 seconds ==============

Let’s run it again with -v for verbose. Since you've already seen the traceback,
you can turn that off with --tb=no.

And now let’s focus on the new tests with -k TestAdd, which works because
there aren’t any other tests with names that contain “TestAdd.”

http://media.pragprog.com/titles/bopytest/code/ch5/a/tasks_proj/tests/func/test_api_exceptions.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 5. Plugins ® 100

$ cd /path/to/code/ch5/a/tasks_proj/tests/func
$ pytest -v --tb=no test_api_exceptions.py -k TestAdd
test session starts

collected 9 items

test api exceptions.py::TestAdd::test missing summary PASSED
test api exceptions.py::TestAdd::test done not bool FAILED

7 tests deselected
=======] failed, 1 passed, 7 deselected in 0.07 seconds =======

We could go off and try to fix this test (and we should later), but now we are
focused on trying to make failures more pleasant for developers.

Let’s start by adding the “thank you” message to the header, which you can
do with a pytest hook called pytest_report_header().

ch5/b/tasks_proj/tests/conftest.py

def pytest report header():
"""Thank tester for running tests.
return "Thanks for running the tests."

Obviously, printing a thank-you message is rather silly. However, the ability
to add information to the header can be extended to add a username and
specify hardware used and versions under test. Really, anything you can
convert to a string, you can stuff into the test header.

Next, we’ll change the status reporting for tests to change F to O and FAILED to
OPPORTUNITY for improvement. There’s a hook function that allows for this type of
shenanigans: pytest report_teststatus():

ch5/b/tasks_proj/tests/conftest.py
def pytest report teststatus(report):
"""Turn failures into opportunities."""
if report.when == 'call' and report.failed:
return (report.outcome, '0O', 'OPPORTUNITY for improvement')

And now we have just the output we were looking for. A test session with no
--verbose flag shows an O for failures, er, improvement opportunities:

$ cd /path/to/code/ch5/b/tasks_proj/tests/func

$ pytest --tb=no test_api_exceptions.py -k TestAdd
test session starts
Thanks for running the tests.

collected 9 items

test api exceptions.py .0

7 tests deselected
======= 1 failed, 1 passed, 7 deselected in 0.06 seconds =======

http://media.pragprog.com/titles/bopytest/code/ch5/b/tasks_proj/tests/conftest.py
http://media.pragprog.com/titles/bopytest/code/ch5/b/tasks_proj/tests/conftest.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Writing Your Own Plugins ® 101

And the -v or --verbose flag will be nicer also:

$ pytest -v --tb=no test_api_exceptions.py -k TestAdd
test session starts
Thanks for running the tests.

collected 9 items

test api exceptions.py::TestAdd::test missing summary PASSED
test api exceptions.py::TestAdd::test done not bool OPPORTUNITY for improvement

7 tests deselected
======= 1 failed, 1 passed, 7 deselected in 0.07 seconds =======

The last modification we’ll make is to add a command-line option, --nice, to
only have our status modifications occur if --nice is passed in:

ch5/c/tasks_proj/tests/conftest.py
def pytest addoption(parser):
"""Turn nice features on with --nice option."""
group = parser.getgroup('nice')
group.addoption("--nice", action="store true",
help="nice: turn failures into opportunities")

def pytest report header():
"""Thank tester for running tests.
if pytest.config.getoption('nice'):
return "Thanks for running the tests."

def pytest report teststatus(report):
"""Turn failures into opportunities."""
if report.when == 'call':
if report.failed and pytest.config.getoption('nice'):
return (report.outcome, '0O', 'OPPORTUNITY for improvement')

This is a good place to note that for this plugin, we are using just a couple of
hook functions. There are many more, which can be found on the main pytest
documentation site.”

We can manually test our plugin just by running it against our example file.
First, with no --nice option, to make sure just the username shows up:
$ cd /path/to/code/ch5/c/tasks_proj/tests/func

$ pytest --tb=no test_api_exceptions.py -k TestAdd
test session starts

collected 9 items

test api exceptions.py .F

7 tests deselected
=======] failed, 1 passed, 7 deselected in 0.07 seconds =======

2. https://docs.pytest.org/en/latest/writing_plugins.html

http://media.pragprog.com/titles/bopytest/code/ch5/c/tasks_proj/tests/conftest.py
https://docs.pytest.org/en/latest/writing_plugins.html
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 5. Plugins ¢ 102

Now with --nice:

$ pytest --nice --th=no test_api_exceptions.py -k TestAdd
test session starts
Thanks for running the tests.

collected 9 items

test api exceptions.py .0

7 tests deselected
=======] failed, 1 passed, 7 deselected in 0.07 seconds =======

And with --nice and --verbose:

$ pytest -v --nice --th=no test_api_exceptions.py -k TestAdd
test session starts
Thanks for running the tests.

collected 9 items

test api exceptions.py::TestAdd::test missing summary PASSED
test api exceptions.py::TestAdd::test done not bool OPPORTUNITY for improvement

7 tests deselected
======= 1 failed, 1 passed, 7 deselected in 0.06 seconds =======

Great! All of the changes we wanted are done with about a dozen lines of code
in a conftest.py file. Next, we’ll move this code into a plugin structure.

Creating an Installable Plugin

The process for sharing plugins with others is well-defined. Even if you never
put your own plugin up on PyPI, by walking through the process, you’ll have
an easier time reading the code from open source plugins and be better
equipped to judge if they will help you or not.

It would be overkill to fully cover Python packaging and distribution in this
book, as the topic is well documented elsewhere.”>* However, it’s a small task
to go from the local config plugin we created in the previous section to some-
thing pip-installable.

First, we need to create a new directory to put our plugin code. It does not
matter what you call it, but since we are making a plugin for the “nice” flag,
let’s call it pytest-nice. We will have two files in this new directory: pytest_nice.py
and setup.py. (The tests directory will be discussed in Testing Plugins, on
page 105) e

3. http://python-packaging.readthedocs.io

4. https://www.pypa.io

http://python-packaging.readthedocs.io
https://www.pypa.io
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Creating an Installable Plugin ® 103

pytest-nice

— LICENCE

F— README.rst

— pytest_nice.py
— setup.py

L— tests

— conftest.py
L test nice.py

In pytest_nice.py, we’ll put the exact contents of our conftest.py that were related
to this feature (and take it out of the tasks_proj/tests/conftest.py):

ch5/pytest-nice/pytest_nice.py
"""Code for pytest-nice plugin."""

import pytest

def pytest addoption(parser):
"""Turn nice features on with --nice option."""
group = parser.getgroup('nice')
group.addoption("--nice", action="store true",
help="nice: turn FAILED into OPPORTUNITY for improvement")

def pytest report header():
"""Thank tester for running tests."""
if pytest.config.getoption('nice'):
return "Thanks for running the tests."

def pytest report teststatus(report):
"""Turn failures into opportunities."""
if report.when == 'call':
if report.failed and pytest.config.getoption('nice'):
return (report.outcome, '0O', 'OPPORTUNITY for improvement')

In setup.py, we need a very minimal call to setup():

ch5/pytest-nice/setup.py
"""Setup for pytest-nice plugin."""

from setuptools import setup

setup(
name='pytest-nice',
version='0.1.0",
description='A pytest plugin to turn FAILURE into OPPORTUNITY',
url="'https://wherever/you/have/info/on/this/package',
author="'Your Name',
author_email='your email@somewhere.com',
license='proprietary"',
py modules=['pytest nice'l,
install requires=['pytest'],
entry points={'pytestll': ['nice = pytest nice', 1, },

http://media.pragprog.com/titles/bopytest/code/ch5/pytest-nice/pytest_nice.py
http://media.pragprog.com/titles/bopytest/code/ch5/pytest-nice/setup.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 5. Plugins ® 104

You'll want more information in your setup if you're going to distribute to a
wide audience or online. However, for a small team or just for yourself, this
will sulffice.

You can include many more parameters to setup(); we only have the required
fields. The version field is the version of this plugin. And it’s up to you when
you bump the version. The url field is required. You can leave it out, but you
get a warning if you do. The author and author_email fields can be replaced with
maintainer and maintainer_email, but one of those pairs needs to be there. The
license field is a short text field. It can be one of the many open source licenses,
your name or company, or whatever is appropriate for you. The py modules
entry lists pytest_nice as our one and only module for this plugin. Although it’s
a list and you could include more than one module, if I had more than one,
I'd use packages instead and put all the modules inside a directory.

So far, all of the parameters to setup() are standard and used for all Python
installers. The piece that is different for pytest plugins is the entry points
parameter. We have listed entry points={'pytestll" ['nice = pytest nice',], },. The
entry_points feature is standard for setuptools, but pytestll is a special identifier
that pytest looks for. With this line, we are telling pytest that nice is the name
of our plugin, and pytest_nice is the name of the module where our plugin lives.
If we had used a package, our entry here would be:

entry points={'pytestll': ['name of plugin = myproject.pluginmodule',]1, },

I haven't talked about the README.rst file yet. Some form of README is a
requirement by setuptools. If you leave it out, you'll get this:

warning: sdist: standard file not found: should have one of README,
README. rst, README.txt

Keeping a README around as a standard way to include some information
about a project is a good idea anyway. Here’s what I've put in the file for
pytest-nice:

ch5/pytest-nice/README.rst
pytest-nice : A pytest plugin

Makes pytest output just a bit nicer during failures.

Features

Includes user name of person running tests in pytest output.
Adds "~ --nice’ " option that:

http://media.pragprog.com/titles/bopytest/code/ch5/pytest-nice/README.rst
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Testing Plugins ¢ 105

turns "CF'" to 70"
with ““-v'", turns ““FAILURE " to " OPPORTUNITY for improvement™"

Installation

Given that our pytest plugins are being saved in .tar.gz form in the
shared directory PATH, then install like this:

$ pip install PATH/pytest-nice-0.1.0.tar.gz
$ pip install --no-index --find-links PATH pytest-nice

$ pytest --nice

There are lots of opinions about what should be in a README. This is a rather
minimal version, but it works.

Testing Plugins

Plugins are code that needs to be tested just like any other code. However,
testing a change to a testing tool is a little tricky. When we developed the
plugin code in Writing Your Own Plugins, on page 98, we tested it manually
by using a sampletest ﬁle runnlngpytestagamst ltand looking at the output
to make sure it was right. We can do the same thing in an automated way

using a plugin called pytester that ships with pytest but is disabled by default.

Our test directory for pytest-nice has two files: conftest.py and test nice.py. To use
pytester, we need to add just one line to conftest.py:

ch5/pytest-nice/tests/conftest.py
"""pytester is needed for testing plugins."""
pytest plugins = 'pytester!'

This turns on the pytester plugin. We will be using a fixture called testdir that
becomes available when pytester is enabled.

Often, tests for plugins take on the form we've described in manual steps:
1. Make an example test file.

2. Run pytest with or without some options in the directory that contains
our example file.

3. Examine the output.

4. Possibly check the result code—O for all passing, 1 for some failing.

http://media.pragprog.com/titles/bopytest/code/ch5/pytest-nice/tests/conftest.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 5. Plugins ® 106

Let’s look at one example:

ch5/pytest-nice/tests/test_nice.py
def test pass_fail(testdir)

create a temporary pytest test module
testdir.makepyfile("""
def test pass():
assert 1 == 1

def test fail():
assert 1 == 2

")

run pytest
result = testdir.runpytest()

fnmatch_lines does an assertion internally
result.stdout.fnmatch lines([

'"*,F', # . for Pass, F for Fail
D

make sure that that we get a '1' exit code for the testsuite
assert result.ret ==

The testdir fixture automatically creates a temporary directory for us to put test
files. It has a method called makepyfile() that allows us to put in the contents of a
test file. In this case, we are creating two tests: one that passes and one that fails.

We run pytest against the new test file with testdirrunpytest(). You can pass in
options if you want. The return value can then be examined further, and is
of type RunResult.”

Usually, Ilook at stdout and ret. For checking the output like we did manually,
use fnmatch_lines, passing in a list of strings that we want to see in the output,
and then making sure that ret is O for passing sessions and 1 for failing sessions.
The strings passed into fnmatch_lines can include glob wildcards. We can use our
example file for more tests. Instead of duplicating that code, let’s make a fixture:

ch5/pytest-nice/tests/test_nice.py
@pytest.fixture()
def sample test(testdir):
testdir.makepyfile("""
def test pass():
assert 1 ==1

def test fail():
assert 1 == 2
nn II)

return testdir

5. https://docs.pytest.org/en/latest/writing_plugins.html# pytest.pytester.RunResult

http://media.pragprog.com/titles/bopytest/code/ch5/pytest-nice/tests/test_nice.py
http://media.pragprog.com/titles/bopytest/code/ch5/pytest-nice/tests/test_nice.py
https://docs.pytest.org/en/latest/writing_plugins.html#_pytest.pytester.RunResult
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Testing Plugins ¢ 107

Now, for the rest of the tests, we can use sample_test as a directory that already
contains our sample test file. Here are the tests for the other option variants:

ch5/pytest-nice/tests/test_nice.py

def test with nice(sample test):
result = sample test.runpytest('--nice')
result.stdout.fnmatch lines(['*.0',]) # . for Pass, 0 for Fail
assert result.ret ==

def test with nice verbose(sample test):
result = sample test.runpytest('-v', '--nice')
result.stdout.fnmatch lines([
'*::test fail OPPORTUNITY for improvement',
D
assert result.ret ==

def test not nice verbose(sample test):
result = sample test.runpytest('-v')
result.stdout.fnmatch lines(['*::test fail FAILED'])
assert result.ret ==

Just a couple more tests to write. Let’s make sure our thank-you message is
in the header:

ch5/pytest-nice/tests/test_nice.py
def test header(sample test):
result = sample test.runpytest('--nice')
result.stdout.fnmatch lines(['Thanks for running the tests.'])

def test header not nice(sample test):
result = sample test.runpytest()
thanks _message = 'Thanks for running the tests.'
assert thanks message not in result.stdout.str()

This could have been part of the other tests also, but I like to have it in a
separate test so that one test checks one thing.

Finally, let’s check the help text:

ch5/pytest-nice/tests/test_nice.py
def test help message(testdir):
result = testdir.runpytest('--help"')

fnmatch_lines does an assertion internally
result.stdout.fnmatch lines([

'nice: "',

'*--nice*nice: turn FAILED into OPPORTUNITY for improvement',
D

I think that’s a pretty good check to make sure our plugin works.

http://media.pragprog.com/titles/bopytest/code/ch5/pytest-nice/tests/test_nice.py
http://media.pragprog.com/titles/bopytest/code/ch5/pytest-nice/tests/test_nice.py
http://media.pragprog.com/titles/bopytest/code/ch5/pytest-nice/tests/test_nice.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 5. Plugins ® 108

To run the tests, let’s start in our pytest-nice directory and make sure our plugin
is installed. We do this either by installing the .zip.gz file or installing the cur-
rent directory in editable mode:

$ cd /path/to/code/ch5/pytest-nice/

$ pip install .

Processing /path/to/code/ch5/pytest-nice

Requirement already satisfied: pytest in
/path/to/venv/lib/python3.6/site-packages (from pytest-nice==0.1.0)

Requirement already satisfied: py>=1.4.33 in
/path/to/venv/lib/python3.6/site-packages (from pytest->pytest-nice==0.1.0)

Requirement already satisfied: setuptools in
/path/to/venv/lib/python3.6/site-packages (from pytest->pytest-nice==0.1.0)

Building wheels for collected packages: pytest-nice

Running setup.py bdist wheel for pytest-nice ... done

Successfully built pytest-nice
Installing collected packages: pytest-nice
Successfully installed pytest-nice-0.1.0

Now that it’s installed, let’s run the tests:

$ pytest -v
test session starts

plugins: nice-0.1.0
collected 7 items

tests/test nice.py::test pass fail PASSED
tests/test nice.py::test with nice PASSED
tests/test_nice.py::test with nice verbose PASSED
tests/test nice.py::test not nice verbose PASSED
tests/test nice.py::test header PASSED

tests/test nice.py::test header not nice PASSED
tests/test nice.py::test help message PASSED

7 passed in 0.34 seconds

Yay! All the tests pass. We can uninstall it just like any other Python package
or pytest plugin:
$ pip uninstall pytest-nice

Uninstalling pytest-nice-0.1.0:
/path/to/venv/lib/python3.6/site-packages/pytest-nice.egg-link

Proceed (y/n)? y
Successfully uninstalled pytest-nice-0.1.0

A great way to learn more about plugin testing is to look at the tests contained
in other pytest plugins available through PyPI.

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Creating a Distribution ® 109

Creating a Distribution

Believe it or not, we are almost done with our plugin. From the command
line, we can use this setup.py file to create a distribution:

$ cd /path/to/code/ch5/pytest-nice

$ python setup.py sdist

running sdist

running egg info
creating pytest nice.egg-info

running check
creating pytest-nice-0.1.0

creating dist
Creating tar archive

$ 1s dist
pytest-nice-0.1.0.tar.gz

(Note that sdist stands for “source distribution.”)

Within pytest-nice, a dist directory contains a new file called pytest-nice-0.1.0.tar.gz.
This file can now be used anywhere to install our plugin, even in place:

$ pip install dist/pytest-nice-0.1.0.tar.gz
Processing ./dist/pytest-nice-0.1.0.tar.gz

Installing collected packages: pytest-nice
Successfully installed pytest-nice-0.1.0

However, you can put your .tar.gz files anywhere you’ll be able to get at them
to use and share.

Distributing Plugins Through a Shared Directory

pip already supports installing packages from shared directories, so all we
have to do to distribute our plugin through a shared directory is pick a location
we can remember and put the .targz files for our plugins there. Let’s say we
put pytest-nice-0.1.0.tar.gz into a directory called myplugins.

To install pytest-nice from myplugins:
$ pip install --no-index --find-links myplugins pytest-nice

The --no-index tells pip to not go out to PyPI to look for what you want to install.
The --find-links myplugins tells PyPI to look in myplugins for packages to install. And
of course, pytest-nice is what we want to install.

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 5. Plugins ® 110

If you've done some bug fixes and there are newer versions in myplugins, you
can upgrade by adding --upgrade:

$ pip install --upgrade --no-index --find-links myplugins pytest-nice

This is just like any other use of pip, but with the --no-index --find-links myplugins
added.

Distributing Plugins Through PyPI

If you want to share your plugin with the world, there are a few more steps
we need to do. Actually, there are quite a few more steps. However, because
this book isn’t focused on contributing to open source, I recommend checking
out the thorough instruction found in the Python Packaging User Guide.®

When you are contributing a pytest plugin, another great place to start is by
using the cookiecutter-pytest-plugin”:

$ pip install cookiecutter
$ cookiecutter https://github.com/pytest-dev/cookiecutter-pytest-plugin

This project first asks you some questions about your plugin. Then it creates
a good directory for you to explore and fill in with your code. Walking through
this is beyond the scope of this book; however, please keep this project in
mind. It is supported by core pytest folks, and they will make sure this project
stays up to date.

Exercises

In chd/cache/test slower.py, there is an autouse fixture called check duration(). You
used it in the Chapter 4 exercises as well. Now, let’s make a plugin out of it.

1. Create a directory named pytest-siower that will hold the code for the new
plugin, similar to the directory described in Creating an Installable Plugin,
on page 102.

2. Fill out all the files of the directory to make pytest-slower an installable plugin.

3. Write some test code for the plugin.

4. Take a look at the Python Package Index® and search for “pytest-.” Find
a pytest plugin that looks interesting to you.

5. Install the plugin you chose and try it out on Tasks tests.

6. https://packaging.python.org/distributing

N
=0
s
=

O
@
=

(o)
=
=
oy
o
(=)
o
3
El

x1=]

—
=
(0]
(%]
Iy
o
)
<
£
(=)
o
o
=
9]
(o]
c
S
=
o
n

O

<
=
(0]
(%]
iy

3=l
c

=}
=)

https://packaging.python.org/distributing
https://github.com/pytest-dev/cookiecutter-pytest-plugin
https://pypi.python.org/pypi
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

What's Next ® 111

What’'s Next

You've used conftest.py a lot so far in this book. There are also configuration
files that affect how pytest runs, such as pytest.ini. In the next chapter, you’ll
run through the different configuration files and learn what you can do there
to make your testing life easier.

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

CHAPTER 6

Configuration

So far in this book, I've talked about the various non-test files that affect
pytest mostly in passing, with the exception of conftest.py, which I covered quite
thoroughly in Chapter 5, Plugins, on page 95. In this chapter, we’ll take a
look at the conflguratlonfllesthataffectpytest discuss how pytest changes
its behavior based on them, and make some changes to the configuration

files of the Tasks project.

Understanding pytest Configuration Files

Before I discuss how you can alter pytest’s default behavior, let’s run down
all of the non-test files in pytest and specifically who should care about them.
Everyone should know about these:

e pytest.ini: This is the primary pytest configuration file that allows you to
change default behavior. Since there are quite a few configuration changes
you can make, a big chunk of this chapter is about the settings you can
make in pytest.ini.

* conftest.py: This is a local plugin to allow hook functions and fixtures for
the directory where the conftest.py file exists and all subdirectories. conftest.py
files are covered Chapter 5, Plugins, on page 95.

e init_.py: When put into every test subdirectory, this file allows you to
have identical test filenames in multiple test directories. We’ll look at an
example of what can go wrong without _init_.py files in test directories in
Avoiding Filename Collisions, on page 120.

If you use tox, you'll be interested in:

e tox.ini: This file is similar to pytest.ini, but for tox. However, you can put your
pytest configuration here instead of having both a tox.ini and a pytest.ini file,

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 6. Configuration ¢ 114

saving you one configuration file. Tox is covered in Chapter 7, Using pytest
with Other Tools, on page 125.

If you want to distribute a Python package (like Tasks), this file will be of

interest:

e setup.cfg: This is a file that’s also in ini file format and affects the behavior
of setup.py. It’s possible to add a couple of lines to setup.py to allow you to
run python setup.py test and have it run all of your pytest tests. If you are
distributing a package, you may already have a setup.cfg file, and you can
use that file to store pytest configuration. You'll see how in Appendix 4,
Packaging and Distributing Python Projects, on page 175.

Regardless of which file you put your pytest configuration in, the format will

mostly be the same.
For pytest.ini:

ché6/format/pytest.ini
[pytest]
addopts = -rsxX -1 --tb=short
xfail strict = true
. more options ...

For tox.ini:

ché/format/tox.ini
. tox specific stuff ...

[pytest]
addopts = -rsxX -1 --tb=short
xfail strict = true

. more options ...

For setup.cfg:

ché/format/setup.cfg

--strict

--strict

. packaging specific stuff ...

[tool:pytest]
addopts = -rsxX -1 --tb=short
xfail strict = true

. more options ...

--strict

The only difference is that the section header for setup.cfg is [tool:pytest] instead

of [pytest].

List the Valid ini-file Options with pytest —help

You can get a list of all the valid settings for pytest.ini from pytest --help:

http://media.pragprog.com/titles/bopytest/code/ch6/format/pytest.ini
http://media.pragprog.com/titles/bopytest/code/ch6/format/tox.ini
http://media.pragprog.com/titles/bopytest/code/ch6/format/setup.cfg
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Changing the Default Command-Line Options ¢ 115

$ pytest --help

[pytest] ini-options in the first pytest.ini|tox.ini|setup.cfg file found:

markers (linelist) markers for test functions

norecursedirs (args) directory patterns to avoid for recursion

testpaths (args) directories to search for tests when no files or
directories are given in the command line.

usefixtures (args) list of default fixtures to be used with this project

python files (args) glob-style file patterns for Python test module discovery

python classes (args) prefixes or glob names for Python test class discovery

python functions (args) prefixes or glob names for Python test function and
method discovery

xfail strict (bool) default for the strict parameter of xfail markers
when not given explicitly (default: False)

doctest optionflags (args) option flags for doctests

addopts (args) extra command line options

minversion (string) minimally required pytest version

You'll look at all of these settings in this chapter, except doctest_optionflags, which
is covered in Chapter 7, Using pytest with Other Tools, on page 125.

Plugins Can Add ini-file Options

The previous settings list is not a constant. It is possible for plugins (and
conftest.py files) to add ini file options. The added options will be added to the
pytest --help output as well.

Now, let’'s explore some of the configuration changes we can make with the
builtin ini file settings available from core pytest.

Changing the Default Command-Line Options

You've used a lot of command-line options for pytest so far, like -v/--verbose
for verbose output and -I/--showlocals to see local variables with the stack trace
for failed tests. You may find yourself always using some of those options—or
preferring to use them—for a project. If you set addopts in pytest.ini to the options
you want, you don’t have to type them in anymore. Here’s a set I like:

[pytest]
addopts = -rsxX -1 --tb=short --strict

The -rsxX tells pytest to report the reasons for all tests that skipped, xfailed, or
xpassed. The -l tells pytest to report the local variables for every failure with
the stacktrace. The --tb=short removes a lot of the stack trace. It leaves the file
and line number, though. The --strict option disallows markers to be used if they
aren’t registered in a config file. You'll see how to do that in the next section.

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 6. Configuration ® 116

Registering Markers to Avoid Marker Typos

Custom markers, as discussed in Marking Test Functions, on page 31, are
great for allowing you to mark a subset of teststorunvmthaspemﬁcmarker
However, it’s too easy to misspell a marker and end up having some tests
marked with @pytest.mark.smoke and some marked with @pytest.mark.somke. By
default, this isn’t an error. pytest just thinks you created two markers. This

can be fixed, however, by registering markers in pytest.ini, like this:

[pytest]

markers =
smoke: Run the smoke test functions for tasks project
get: Run the test functions that test tasks.get()

With these markers registered, you can now also see them with pytest --markers
with their descriptions:
$ cd /path/to/code/ch6/b/tasks_proj/tests

$ pytest --markers
@pytest.mark.smoke: Run the smoke test test functions

@pytest.mark.get: Run the test functions that test tasks.get()
@pytest.mark.skip(reason=None): skip the ...

If markers aren’t registered, they won’t show up in the --markers list. With them
registered, they show up in the list, and if you use --strict, any misspelled or
unregistered markers show up as an error. The only difference between
ché/a/tasks_proj and ch6/bftasks_proj is the contents of the pytest.ini file. It's empty
in ché/a. Let’s try running the tests without registering any markers:

$ cd /path/to/code/ch6/a/tasks_proj/tests
$ pytest --strict --tb=line
test session starts
collected 45 items / 2 errors

ERRORS
ERROR collecting func/test add.py
func/test add.py:20: in <module>
@pytest.mark.smoke

E AttributeError: 'smoke' not a registered marker
ERROR collecting func/test api_exceptions.py
func/test api exceptions.py:30: in <module>
@pytest.mark.smoke

E AttributeError: 'smoke' not a registered marker

2 error in 0.24 seconds

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Requiring a Minimum pytest Version ® 117

If you use markers in pytest.ini to register your markers, you may as well add
--strict to your addopts while you're at it. You'll thank me later. Let’'s go ahead
and add a pytest.ini file to the tasks project:

ché6/b/tasks_proj/tests/pytest.ini
[pytest]
addopts = -rsxX -1 --tb=short --strict
markers =
smoke: Run the smoke test test functions
get: Run the test functions that test tasks.get()

This has a combination of flags I prefer over the defaults: -rsxX to report which
tests skipped, xfailed, or xpassed, --tb=short for a shorter traceback for failures,
and --strict to only allow declared markers. And then a list of markers to allow
for the project.

This should allow us to run tests, including the smoke tests:

$ cd /path/to/code/ch6/b/tasks_proj/tests
$ pytest --strict -m smoke
test session starts

collected 57 items

func/test add.py .
func/test api exceptions.py ..

54 tests deselected
=========== 3 passed, 54 deselected in 0.06 seconds ============

Requiring a Minimum pytest Version

The minversion setting enables you to specify a minimum pytest version you
expect for your tests. For instance, I like to use approx() when testing floating
point numbers for “close enough” equality in tests. But this feature didn’t get
introduced into pytest until version 3.0. To avoid confusion, I add the following
to projects that use approx():

[pytest]
minversion = 3.0

This way, if someone tries to run the tests using an older version of pytest,
an error message appears.

Stopping pytest from Looking in the Wrong Places

Did you know that one of the definitions of “recurse” is to swear at your code
twice? Well, no. But, it does mean to traverse subdirectories. In the case of
pytest, test discovery traverses many directories recursively. But there are
some directories you just know you don’t want pytest looking in.

http://media.pragprog.com/titles/bopytest/code/ch6/b/tasks_proj/tests/pytest.ini
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 6. Configuration ® 118

The default setting for norecurse is '.* build dist CVS _darcs {arch} and *.egg. Having '*
is a good reason to name your virtual environment '.venv', because all directo-
ries starting with a dot will not be traversed. However, I have a habit of
naming it venv, so I could add that to norecursedirs.

In the case of the Tasks project, you could list src in there also, because having
pytest look for test files there would just be a waste of time.

[pytest]
norecursedirs = .* venv src *.egg dist build

When overriding a setting that already has a useful value, like this setting,
it’s a good idea to know what the defaults are and put the ones back you care
about, as I did in the previous code with *.egg dist build.

The norecursedirs is kind of a corollary to testpaths, so let’s look at that next.

Specifying Test Directory Locations

Whereas norecursedirs tells pytest where not to look, testpaths tells pytest where
to look. testspaths is a list of directories relative to the root directory to look in
for tests. It’s only used if a directory, file, or nodeid is not given as an argument.

Suppose for the Tasks project we put pytest.ini in the tasks_proj directory instead
of under tests:

tasks proj/

— pytest.ini
src

] L tasks

| — api.py
L tests

— conftest.py
—— func

| F— _init__.py
} t:: test_add.py
—

unit
F— _init__.py

— test_task.py
_lll

It could then make sense to put tests in testpaths:

[pytest]
testpaths = tests

Now, as long as you start pytest from the tasks_proj directory, pytest will only
look in tasks_proj/tests. My problem with this is that I often bounce around a

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Changing Test Discovery Rules ® 119

test directory during test development and debugging, so I can easily test a
subdirectory or file without typing out the whole path. Therefore, for me, this
setting doesn’t help much with interactive testing.

However, it’s great for tests launched from a continuous integration server
or from tox. In those cases, you know that the root directory is going to be
fixed, and you can list directories relative to that fixed root. These are also
the cases where you really want to squeeze your test times, so shaving a bit
off of test discovery is awesome.

At first glance, it might seem silly to use both testpaths and norecursedirs at the
same time. However, as you've seen, testspaths doesn’t help much with interac-
tive testing from different parts of the file system. In those cases, norecursedirs
can help. Also, if you have directories with tests that don’t contain tests, you
could use norecursedirs to avoid those. But really, what would be the point of
putting extra directories in tests that don’t have tests?

Changing Test Discovery Rules

pytest finds tests to run based on certain test discovery rules. The standard
test discovery rules are:

e Start at one or more directory. You can specify filenames or directory
names on the command line. If you don’t specify anything, the current
directory is used.

¢ Look in the directory and all subdirectories recursively for test modules.
¢ A test module is a file with a name that looks like test *.py or * test.py.
¢ Look in test modules for functions that start with test .

¢ Look for classes that start with Test. Look for methods in those classes
that start with test but don’t have an _init_ method.

These are the standard discovery rules; however, you can change them.

python_classes

The usual test discovery rule for pytest and classes is to consider a class a
potential test class if it starts with Test*. The class also can’t have an _init_()
function. But what if we want to name our test classes <something>Test or
<something>Suite? That’s where python_classes comes in:

[pytest]
python classes = *Test Test* *Suite

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 6. Configuration ¢ 120

This enables us to name classes like this:

class DeleteSuite():
def test _delete_1():

def test delete 2():

python_files

Like pytest classes, python_files modifies the default test discovery rule, which is
to look for files that start with test * or end in * test.

Let’s say you have a custom test framework in which you named all of your
test files check_<something>.py. Seems reasonable. Instead of renaming all of
your files, just add a line to pytest.ini like this:

[pytest]
python_files = test * * test check *

Easy peasy. Now you can migrate your naming convention gradually if you
want to, or just leave it as check_*.

python_functions

python_functions acts like the previous two settings, but for test function and
method names. The default is test *. To add check *—you guessed it—do this:

[pytest]
python functions = test * check *

Now the pytest naming conventions don’t seem that restrictive, do they? If you
don’t like the default naming convention, just change it. However, I encourage
you to have a better reason. Migrating hundreds of test files is definitely a
good reason.

Disallowing XPASS

Setting xfail_strict = true causes tests marked with @pytest.mark.xfail that don’t fail to
be reported as an error. I think this should always be set. For more information
on the xfail marker, go to Marking Tests as Expecting to Fail, on page 37.

Avoiding Filename Collisions

The utility of having _init_.py files in every test subdirectory of a project con-
fused me for a long time. However, the difference between having these and

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Avoiding Filename Collisions ® 121

not having these is simple. If you have _init__.py files in all of your test subdi-
rectories, you can have the same test filename show up in multiple directories.
If you don’t, you can’t. That'’s it. That’s the effect on you.

Here’s an example. Directory a and b both have the file, test foo.py. It doesn’t
matter what these files have in them, but for this example, they look like this:

ch6/dups/a/test_foo.py
def test a():
pass

ch6/dups/b/test_foo.py
def test b():
pass

With a directory structure like this:

dups
a

| L— test foo.py
L— b

L test foo.py

These files don’t even have the same content, but it’s still mucked up. Run-
ning them individually will be fine, but running pytest from the dups directory
won’t work:

$ cd /path/to/code/ch6/dups
$ pytest a

test session starts
collected 1 items

a/test foo.py .

=============== 1 passed in 0.01 seconds
$ pytest b
test session starts

collected 1 items
b/test foo.py .

===============] passed in 0.01 seconds

test session starts
collected 1 items / 1 errors

ERRORS
ERROR collecting b/test foo.py
import file mismatch:
imported module 'test foo' has this file attribute:
/path/to/code/ch6/dups/a/test foo.py
which is not the same as the test file we want to collect:
/path/to/code/ch6/dups/b/test foo.py

http://media.pragprog.com/titles/bopytest/code/ch6/dups/a/test_foo.py
http://media.pragprog.com/titles/bopytest/code/ch6/dups/b/test_foo.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 6. Configuration ® 122

HINT: remove pycache / .pyc files and/or use a unique basename
for your test file modules

1 error in 0.15 seconds

That error message doesn’t really make it clear what went wrong.

To fix this test, just add empty _init_.py files in the subdirectories. Here, the
example directory dups fixed is the same as dups, but with _init_.py files added:

dups_fixed/

F—a

| |— _init__.py
| L— test foo.py
L—b

F— _init__.py

L test foo.py

Now, let’s try this again from the top level in dups_fixed:

$ cd /path/to/code/ch6/dups_fixed
$ pytest
test session starts

collected 2 items

a/test foo.py .
b/test foo.py .

=============== 2 passed in 0.01 seconds

There, all better. You might say to yourself that you’ll never have duplicate
filenames, so it doesn’t matter. That’s fine. But projects grow and test direc-
tories grow, and do you really want to wait until it happens to you before you
fix it? I say just put those files in there as a habit and don’t worry about it
again.

Exercises

In Chapter 5, Plugins, on page 95, you created a plugin called pytest-nice that

included a --nice command-line option. Let’s extend that to include a pytest.ini
option called nice.

1. Add the following line to the pytest_addoption hook function in pytest_nice.py:
parser.addini('nice', type="'bool', help="Turn failures into opportunities.')

2. The places in the plugin that use getoption() will have to also call getini('nice').
Make those changes.

3. Manually test this by adding nice to a pytest.ini file.

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

What's Next ® 123

4. Don't forget the plugin tests. Add a test to verify that the setting nice’
from pytest.ini works correctly.

5. Add the tests to the plugin tests directory. You'll need to look up some
extra pytester functionality.’

What’'s Next

While pytest is extremely powerful on its own—especially so with plugins—it
also integrates well with other software development and software testing
tools. In the next chapter, you'll look at using pytest in conjunction with
other powerful testing tools.

1. https://docs.pytest.org/en/latest/ modules/ pytest/pytester.html#Testdir

https://docs.pytest.org/en/latest/_modules/_pytest/pytester.html#Testdir
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

CHAPTER 7

Using pytest with Other Tools

You don’t usually use pytest on its own, but rather in a testing environment
with other tools. This chapter looks at other tools that are often used in
combination with pytest for effective and efficient testing. While this is by no
means an exhaustive list, the tools discussed here give you a taste of the
power of mixing pytest with other tools.

pdb: Debugging Test Failures

The pdb module is the Python debugger in the standard library. You use --pdb
to have pytest start a debugging session at the point of failure. Let’s look at
pdb in action in the context of the Tasks project.

In Parametrizing Fixtures, on page 64, we left the Tasks project with a few

failures:

$ cd /path/to/code/ch3/c/tasks_proj
$ pytest --tb=no -q

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF.FFF.
42 failed, 54 passed in 4.74 seconds

Before we look at how pdb can help us debug this test, let’s take a look at the
pytest options available to help speed up debugging test failures, which we
first looked at in Using Options, on page 9:

e --tb=[auto/long/short/line/native/no]: Controls the traceback style.

e -v/--verbose: Displays all the test names, passing or failing.

e -//--showlocals: Displays local variables alongside the stacktrace.

e -If/-last-failed: Runs just the tests that failed last.

» -x /-exitfirst: Stops the tests session with the first failure.

e --pdb: Starts an interactive debugging session at the point of failure.

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 7. Using pytest with Other Tools ® 126

Installing MongoDB
As mentioned in Chapter 3, pytest Fixtures, on page 49, running
the MongoDB tests requires installing MongoDB and pymongo.
I've been testing with the Community Server edition found at
2 hitps:/lwwwmongod com/download-center. pymongo is installed with pip
_I pip install pymongo. However, this is the last example in the book that
uses MongoDB. To try out the debugger without using MongoDB,
you could run the pytest commands from code/ch2/, as this directory

also contains a few failing tests.

We just ran the tests from code/ch3/c to see that some of them were failing. We
didn’t see the tracebacks or the test names because --th=no turns off trace-
backs, and we didn’t have --verbose turned on. Let’s re-run the failures (at most
three of them) with verbose:

$ pytest --tb=no --verbose --1f --maxfail=3
test session starts
run-last-failure: rerun last 42 failures
collected 96 items

tests/func/test add.py::test add returns valid id[mongo] FAILED
tests/func/test add.py::test added task has id set[mongo] FAILED
tests/func/test add variety.py::test add 1[mongo] FAILED

54 tests deselected
=========== 3 failed, 54 deselected in 3.14 seconds ============

Now we know which tests are failing. Let’s look at just one of them by using
-X, including the traceback by not using --tb=no, and showing the local vari-
ables with -I:

$ pytest -v --1f -1 -x

test session starts
run-last-failure: rerun last 42 failures
collected 96 items

tests/func/test add.py::test add returns valid id[mongo] FAILED

FAILURES
test add returns valid id[mongo]

tasks_db = None

def test add returns valid id(tasks db):
"""tasks.add(<valid task>) should return an integer."""
GIVEN an initialized tasks db
WHEN a new task is added
THEN returned task id is of type int
new task = Task('do something')
task _id = tasks.add(new_ task)

https://www.mongodb.com/download-center
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

pdb: Debugging Test Failures ® 127

> assert isinstance(task id, int)

E AssertionError: assert False

E + where False = isinstance(ObjectId('59783baf8204177f24cb1lb68'), int)
new task = Task(summary='do something', owner=None, done=False, id=None)

task id = ObjectId('59783baf8204177f24cb1b68")

tasks_db = None

tests/func/test add.py:16: AssertionError

54 tests deselected
===========] failed, 54 deselected in 2.47 seconds ============

Quite often this is enough to understand the test failure. In this particular
case, it’s pretty clear that task_id is not an integer—it’s an instance of Objectld.
Objectld is a type used by MongoDB for object identifiers within the database.
My intention with the tasksdb_pymongo.py layer was to hide particular details of
the MongoDB implementation from the rest of the system. Clearly, in this
case, it didn’t work.

However, we want to see how to use pdb with pytest, so let’s pretend that it
wasn’t obvious why this test failed. We can have pytest start a debugging
session and start us right at the point of failure with --pdb:

$ pytest -v --1f -x --pdb

test session starts

run-last-failure: rerun last 42 failures
collected 96 items

tests/func/test add.py::test add returns valid id[mongo] FAILED
SSS>555555555555555>>555>> traceback >>>55555555555555555555555>

tasks _db = None

def test add returns valid id(tasks db):
"""tasks.add(<valid task>) should return an integer.
GIVEN an initialized tasks db
WHEN a new task is added
THEN returned task id is of type int
new task = Task('do something')
task_id = tasks.add(new_task)

> assert isinstance(task id, int)
E AssertionError: assert False
E + where False = isinstance(ObjectId('59783bf48204177f2a786893"'), int)

tests/func/test add.py:16: AssertionError
SS>55555555555555>>>>>>>> entering PDB >>5555555555555555555555>>
> /path/to/code/ch3/c/tasks proj/tests/func/test add.py(16)

> test add returns valid id()

-> assert isinstance(task_id, int)

(Pdb)

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 7. Using pytest with Other Tools ¢ 128

Now that we are at the (Pdb) prompt, we have access to all of the interactive
debugging features of pdb. When looking at failures, I regularly use these
commands:

e p/print expr: Prints the value of exp.

e pp expr: Pretty prints the value of expr.

e |/list: Lists the point of failure and five lines of code above and below.
e |/list begin,end: Lists specific line numbers.

e a/args: Prints the arguments of the current function with their values. (This
is helpful when in a test helper function.)

e u/up: Moves up one level in the stack trace.
e d/down: Moves down one level in the stack trace.
* g/quit: Quits the debugging session.

Other navigation commands like step and next aren’t that useful since we are
sitting right at an assert statement. You can also just type variable names and
get the values.

You can use p/print expr similar to the -I/--showlocals option to see values within
the function:

(Pdb) p new task

Task(summary='do something', owner=None, done=False, id=None)
(Pdb) p task id

ObjectId('59783bf48204177f2a786893"')

(Pdb)

Now you can quit the debugger and continue on with testing.

(Pdb) q

54 tests deselected
========== 1 failed, 54 deselected in 123.40 seconds ===========

If we hadn’t used -x, pytest would have opened pdb again at the next failed
test. More information about using the pdb module is available in the Python
documentation.’

1. https://docs.python.org/3/library/pdb.html

https://docs.python.org/3/library/pdb.html
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Coverage.py: Determining How Much Code Is Tested ® 129

Coverage.py: Determining How Much Code Is Tested

Code coverage is a measurement of what percentage of the code under test
is being tested by a test suite. When you run the tests for the Tasks project,
some of the Tasks functionality is executed with every test, but not all of it.
Code coverage tools are great for telling you which parts of the system are
being completely missed by tests.

Coverage.py is the preferred Python coverage tool that measures code coverage.
You'll use it to check the Tasks project code under test with pytest.

Before you use coverage.py, you need to install it. I'm also going to have you
install a plugin called pytest-cov that will allow you to call coverage.py from pytest
with some extra pytest options. Since coverage is one of the dependencies of
pytest-cov, it is sufficient to install pytest-cov, as it will pull in coverage.py:

$ pip install pytest-cov
Collecting pytest-cov
Using cached pytest cov-2.5.1-py2.py3-none-any.whl
Collecting coverage>=3.7.1 (from pytest-cov)
Using cached coverage-4.4.1-cp36-cp36m-macosx 10 10 x86 64.whl

Installing collected packages: coverage, pytest-cov
Successfully installed coverage-4.4.1 pytest-cov-2.5.1

Let’s run the coverage report on version 2 of Tasks. If you still have the first
version of the Tasks project installed, uninstall it and install version 2:

$ pip uninstall tasks
Uninstalling tasks-0.1.0:
/path/to/venv/bin/tasks
/path/to/venv/lib/python3.6/site-packages/tasks.egg-link
Proceed (y/n)? vy
Successfully uninstalled tasks-0.1.0
$ cd /path/to/code/ch7/tasks_proj_v2
$ pip install -e .
Obtaining file:///path/to/code/ch7/tasks proj v2

Installing collected packages: tasks
Running setup.py develop for tasks

Successfully installed tasks

$ pip list

tasks (0.1.1, /path/to/code/ch7/tasks proj v2/src)

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 7. Using pytest with Other Tools ¢ 130

Now that the next version of Tasks is installed, we can run our baseline cov-
erage report:

$ cd /path/to/code/ch7/tasks_proj_v2

$ pytest --cov=src

test session starts
plugins: mock-1.6.2, cov-2.5.1

collected 62 items

tests/func/test add.py ...

tests/func/test add variety.pycciiiiiiiiiiiiiinnn
tests/func/test add variety2.py
tests/func/test api exceptions.py
tests/func/test unique id.py .

tests/unit/test cli.py

tests/unit/test task.py

—————————— coverage: platform darwin, python 3.6.2-final-0 -----------

Name Stmts Miss Cover
src/tasks/ _init .py 2 0 100%
src/tasks/api.py 79 22 72%
src/tasks/cli.py 45 14 69%
src/tasks/config.py 18 12 33%
src/tasks/tasksdb_pymongo.py 74 74 0%
src/tasks/tasksdb tinydb.py 32 4 88%
TOTAL 250 126 50%

62 passed in 0.47 seconds

Since the current directory is tasks_proj v2 and the source code under test is
all within src, adding the option --cov=src generates a coverage report for that
specific directory under test only.

As you can see, some of the files have pretty low, to even 0%, coverage. These
are good reminders: tasksdb_pymongo.py is at 0% because we've turned off testing
for MongoDB in this version. Some of the others are pretty low. The project
will definitely have to put tests in place for all of these areas before it’s ready
for prime time.

A couple of files I thought would have a higher coverage percentage are api.py
and tasksdb_tinydb.py. Let’s look at tasksdb_tinydb.py and see what’s missing. I find
the best way to do that is to use the HTML reports.

If you run coverage.py again with --cov-report=html, an HTML report is generated:

$ pytest --cov=src --cov-report=html

test session starts
plugins: mock-1.6.2, cov-2.5.1

collected 62 items

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Coverage.py: Determining How Much Code Is Tested ¢ 131

tests/func/test add.py ...

tests/func/test add variety.pycciiiiiiiiiiiiiiia.,
tests/func/test add variety2.py
tests/func/test api exceptions.py
tests/func/test unique id.py .

tests/unit/test cli.py

tests/unit/test task.py

---------- coverage: platform darwin, python 3.6.2-final-0 -----------
Coverage HTML written to dir htmlcov

62 passed in 0.45 seconds

You can then open htmlcov/index.html in a browser, which shows the output in
the following screen:

® © /[y coverage report X\ Brian

C | @ file:/{/Users/okken/projects/book/bopytest/Book/code/ch7 tasks_pr... 7 & =T

Coverage report: 50% filter...
Module | statements missing excluded coverage
src/tasks/__init__ .py 2 0 0 100%
src/tasks/apl.py 79 22 0 72%
src/tasks/cli.py 45 14 0 60%
src/tasks/config.py 18 12 0 33%
src/tasks/tasksdb_pymongo.py 74 74 0 0%
src/tasks/tasksdb_tinydb.py 32 4 0 88%
Total 250 126 i} 50%

coverage.py vd.4.1, created at 2017-07-26 00:09

Clicking on tasksdb_tinydb.py shows a report for the one file. The top of the report
shows the percentage of lines covered, plus how many lines were covered and
how many are missing, as shown in the following screen:

@ @ /[y coverage for src/tasks/tasksc X\ Brian

&« C | @ file:///Users/okken/projects/book/bopytest/Book/code/ch... ¥r | & =

Coverage for src/tasks/tasksdb_tinydb.py : 88%

32 statements 28 run| 4 missing |0 excluded

"""Database wrapper for TinyDB for tasks project."™"
import tinydb

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 7. Using pytest with Other Tools ¢ 132

Scrolling down, you can see the missing lines, as shown in the next screen:

def list_tasks{self, owner=MNone): # type (str) —= listfdict]
"""Return list of tasks."""
if owner is None:
return self._db.all()
else:
| return self._db.search(tinydb.Query().owner == owner)

def count{self): # type () —= int
"""Return number of tasks in db."""
return len{self._db)

def update(self, task_id, task): # type (int, dict) -= ()
""UMpdify task in db with given task_id."""
| self._db.update(task, eids=[task_id])

def delete(self, task_id): # type (int) => ()
"""Remove a task from db with given task_id."""
| self._db.remove(eids=[task_id])

def delete_all{self):
"""Remove all tasks from db.
self._db.purge()

def unique_id(self): # type () -= int
""UReturn an integer that does not exist in the db."™""
i=1
while self._db.contains{eids=[i]):
| i+=1
return i

Even though this screen isn’t the complete page for this file, it's enough to
tell us that:

1. We're not testing list_tasks() with owner set.
2. We're not testing update() or delete().
3. We may not be testing unique_id() thoroughly enough.

Great. We can put those on our testing to-do list, along with testing the config
system.

While code coverage tools are extremely useful, striving for 100% coverage
can be dangerous. When you see code that isn’t tested, it might mean a test
is needed. But it also might mean that there’s some functionality of the system
that isn’t needed and could be removed. Like all software development tools,
code coverage analysis does not replace thinking.

Quite a few more options and features of both coverage.py and pytest-cov are
available. More information can be found in the coverage.py’ and pytest-cov®
documentation.

2. https://coverage.readthedocs.io

3. https://pytest-cov.readthedocs.io

https://coverage.readthedocs.io
https://pytest-cov.readthedocs.io
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

mock: Swapping Out Part of the System ¢ 133

mock: Swapping Out Part of the System

The mock package is used to swap out pieces of the system to isolate bits of
our code under test from the rest of the system. Mock objects are sometimes
called test doubles, spies, fakes, or stubs. Between pytest’s own monkeypatch
fixture (covered in Using monkeypatch, on page 85) and mock, you should have

all the test double functionality you need.

Mocks Are Weird
If this is the first time you’'ve encountered test doubles like mocks,
A stubs, and spies, it’s gonna get real weird real fast. It’s fun though,
and quite powerful.

The mock package is shipped as part of the Python standard library as
unittest.mock as of Python 3.3. In earlier versions, it's available as a separate
PyPI-installable package as a rolling backport. What that means is that you
can use the PyPI version of mock with Python 2.6 through the latest Python
version and get the same functionality as the latest Python mock. However,
for use with pytest, a plugin called pytest-mock has some conveniences that
make it my preferred interface to the mock system.

For the Tasks project, we’ll use mock to help us test the command-line interface.
In Coverage.py: Determining How Much Code Is Tested, on page 129, you saw

that our cli.py file wasn’t being tested at all. We’'ll start to fix that now. But
let’s first talk about strategy.

An early decision in the Tasks project was to do most of the functionality
testing through api.py. Therefore, it’s a reasonable decision that the command-
line testing doesn’t have to be complete functionality testing. We can have a
fair amount of confidence that the system will work through the CLI if we
mock the API layer during CLI testing. It’s also a convenient decision, allowing
us to look at mocks in this section.

The implementation of the Tasks CLI uses the Click third-party command-
line interface package.’ There are many alternatives for implementing a CLI,
including Python’s builtin argparse module. One of the reasons I chose Click
is because it includes a test runner to help us test Click applications. However,
the code in clipy, although hopefully typical of Click applications, is not
obvious.

4. http://click.pocoo.org

http://click.pocoo.org
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 7. Using pytest with Other Tools ¢ 134

Let’s pause and install version 3 of Tasks:

$ cd /path/to/code/
$ pip install -e ch7/tasks_proj_v2

Successfully installed tasks

In the rest of this section, you’ll develop some tests for the “list” functionality.
Let’s see it in action to understand what we're going to test:

$ tasks list

ID owner done summary
$ tasks add 'do something great'
$ tasks add "repeat" -o Brian
$ tasks add "again and again" --owner Okken
$ tasks list
ID owner done summary
1 False do something great
2 Brian False repeat
3 Okken False again and again
$ tasks list -o Brian
ID owner done summary
2 Brian False repeat
$ tasks list --owner Brian
ID owner done summary
2 Brian False repeat

Looks pretty simple. The tasks list command lists all the tasks with a header.
It prints the header even if the list is empty. It prints just the things from one
owner if -0 or --owner are used. How do we test it? Lots of ways are possible,
but we're going to use mocks.

Tests that use mocks are necessarily white-box tests, and we have to look
into the code to decide what to mock and where. The main entry point is here:
ch7/tasks_proj_v2/src/tasks/cli.py

if npame ==
tasks cli()

__main

That’s just a call to tasks_cli():

ch7/tasks_proj_v2/src/tasks/cli.py
@click.group(context settings={'help option names': ['-h', '--help'l})
@click.version option(version='0.1.1")
def tasks_cli():
"""Run the tasks application."""
pass

http://media.pragprog.com/titles/bopytest/code/ch7/tasks_proj_v2/src/tasks/cli.py
http://media.pragprog.com/titles/bopytest/code/ch7/tasks_proj_v2/src/tasks/cli.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

mock: Swapping Out Part of the System ¢ 135

Obvious? No. But hold on, it gets better (or worse, depending on your perspec-
tive). Here’s one of the commands—the list command:

ch7/tasks_proj_v2/src/tasks/cli.py

@tasks cli.command(name="1ist", help="list tasks")

@click.option('-0', '--owner', default=None,
help='1list tasks with this owner')

def list tasks(owner):

List tasks in db.

If owner given, only list tasks with that owner.

formatstr = "{: >4} {: >10} {: >5} {}"
print(formatstr.format('ID', 'owner', ‘'done', 'summary'))
print(formatstr.format('--"', '----- B "))
with tasks db():
for t in tasks.list tasks(owner):

done = 'True' if t.done else 'False'’

owner = '' if t.owner is None else t.owner

print(formatstr.format(

t.id, owner, done, t.summary))

Once you get used to writing Click code, it’s not that bad. I'm not going to
explain all of this here, as developing command-line code isn’t the focus of
the book; however, even though I'm pretty sure I have this code right, there’s
lots of room for human error. That's why a good set of automated tests to
make sure this works correctly is important.

This list_tasks(owner) function depends on a couple of other functions: tasks_db(),
which is a context manager, and tasks.list_tasks(owner), which is the API function.
We're going to use mock to put fake functions in place for tasks_db() and
tasks.list_tasks(). Then we can call the list_tasks method through the command-
line interface and make sure it calls the tasks.list_tasks() function correctly and
deals with the return value correctly.

To stub tasks_db(), let’s look at the real implementation:

ch7/tasks_proj_v2/src/tasks/cli.py
@contextmanager
def tasks db():
config = tasks.config.get config()
tasks.start_tasks db(config.db path, config.db type)
yield
tasks.stop tasks db()

The tasks_db() function is a context manager that retrieves the configuration
from tasks.config.get_config(), another external dependency, and uses the config-
uration to start a connection with the database. The yield releases control to

http://media.pragprog.com/titles/bopytest/code/ch7/tasks_proj_v2/src/tasks/cli.py
http://media.pragprog.com/titles/bopytest/code/ch7/tasks_proj_v2/src/tasks/cli.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 7. Using pytest with Other Tools ® 136

the with block of list_tasks(), and after everything is done, the database connection
is stopped.

For the purpose of just testing the CLI behavior up to the point of calling API
functions, we don’t need a connection to an actual database. Therefore, we
can replace the context manager with a simple stub:

ch7/tasks_proj_v2/tests/unit/test_cli.py
@contextmanager
def stub tasks db():

yield

Because this is the first time we’'ve looked at our test code for test cli,py, let’s
look at this with all of the import statements:

ch7/tasks_proj_v2/tests/unit/test_cli.py

from click.testing import CliRunner
from contextlib import contextmanager
import pytest

from tasks.api import Task

import tasks.cli

import tasks.config

@contextmanager
def stub tasks db():
yield

Those imports are for the tests. The only import needed for the stub is from
contextlib import contextmanager.

We’'ll use mock to replace the real context manager with our stub. Actually,
we’ll use mocker, which is a fixture provided by the pytest-mock plugin. Let’s look
at an actual test. Here’s a test that calls tasks list:

ch7/tasks_proj_v2/tests/unit/test_cli.py

def test list no_args(mocker):
mocker.patch.object(tasks.cli, ' tasks db', new=stub tasks db)
mocker.patch.object(tasks.cli.tasks, 'list tasks', return value=[])
runner = CliRunner()
runner.invoke(tasks.cli.tasks cli, ['list'])
tasks.cli.tasks.list tasks.assert called once with(None)

The mocker fixture is provided by pytest-mock as a convenience interface to
unittest.mock. The first line, mocker.patch.object(tasks.cli, 'tasks_db', new=stub tasks db),
replaces the tasks_db() context manager with our stub that does nothing.

http://media.pragprog.com/titles/bopytest/code/ch7/tasks_proj_v2/tests/unit/test_cli.py
http://media.pragprog.com/titles/bopytest/code/ch7/tasks_proj_v2/tests/unit/test_cli.py
http://media.pragprog.com/titles/bopytest/code/ch7/tasks_proj_v2/tests/unit/test_cli.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

mock: Swapping Out Part of the System ¢ 137

The second line, mocker.patch.object(tasks.cli.tasks, 'list_tasks', return_value=[]), replaces
any calls to tasks.list_tasks() from within tasks.cli to a default MagicMock object with
a return value of an empty list. We can use this object later to see if it was
called correctly. The MagicMock class is a flexible subclass of unittest.Mock with
reasonable default behavior and the ability to specify a return value, which
is what we are using in this example. The Mock and MagicMock classes (and
others) are used to mimic the interface of other code with introspection
methods built in to allow you to ask them how they were called.

The third and fourth lines of test list no_args() use the Click CliRunner to do the
same thing as calling tasks list on the command line.

The final line uses the mock object to make sure the API call was called cor-
rectly. The assert_called_once_with() method is part of unittest.mock.Mock objects,
which are all listed in the Python documentation.”

Let’s look at an almost identical test function that checks the output:

ch7/tasks_proj_v2/tests/unit/test_cli.py
@pytest.fixture()
def no db(mocker):
mocker.patch.object(tasks.cli, ' tasks db', new=stub tasks db)

def test list print empty(no_db, mocker):
mocker.patch.object(tasks.cli.tasks, 'list tasks', return value=[])
runner = ClLiRunner()

result = runner.invoke(tasks.cli.tasks cli, ['list'])
expected output = (" ID owner done summary\n"

T \n")
assert result.output == expected output

This time we put the mock stubbing of tasks_db into a no_db fixture so we
can reuse it more easily in future tests. The mocking of tasks.list_tasks() is
the same as before. This time, however, we are also checking the output
of the command-line action through result.output and asserting equality to
expected_output.

This assert could have been put in the first test, test list no_args, and we could
have eliminated the need for two tests. However, I have less faith in my ability
to get CLI code correct than other code, so separating the questions of “Is the
API getting called correctly?” and “Is the action printing the right thing?” into
two tests seems appropriate.

5. https://docs.python.org/dev/library/unittest.mock.html

http://media.pragprog.com/titles/bopytest/code/ch7/tasks_proj_v2/tests/unit/test_cli.py
https://docs.python.org/dev/library/unittest.mock.html
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 7. Using pytest with Other Tools ¢ 138

The rest of the tests for the tasks list functionality don’t add any new concepts,
but perhaps looking at several of these makes the code easier to understand:

ch7/tasks_proj_v2/tests/unit/test_cli.py
def test list print many items(no db, mocker):
many tasks = (
Task('write chapter', 'Brian', True, 1),
Task('edit chapter', 'Katie', False, 2),
Task('modify chapter', 'Brian', False, 3),
Task('finalize chapter', 'Katie', False, 4),
)
mocker.patch.object(tasks.cli.tasks, 'list tasks',
return_value=many tasks)
runner = CliRunner()

result = runner.invoke(tasks.cli.tasks cli, ['list'])

expected output = (" ID owner done summary\n"
oo \n"
" 1 Brian True write chapter\n"
" 2 Katie False edit chapter\n"
" 3 Brian False modify chapter\n"
R Katie False finalize chapter\n")

assert result.output == expected output

def test list dash o(no_db, mocker):
mocker.patch.object(tasks.cli.tasks, 'list tasks')
runner = CliRunner()
runner.invoke(tasks.cli.tasks cli, ['list', '-0', 'brian'])
tasks.cli.tasks.list tasks.assert called once with('brian')

def test list dash dash owner(no db, mocker):
mocker.patch.object(tasks.cli.tasks, 'list tasks')
runner = ClLiRunner()
runner.invoke(tasks.cli.tasks cli, ['list', '--owner', 'okken'l])
tasks.cli.tasks.list tasks.assert called once with('okken')

Let’s make sure they all work:

$ cd /path/to/code/ch7/tasks_proj_v2

$ pytest -v tests/unit/test_cli.py

test session starts
plugins: mock-1.6.2, cov-2.5.1
collected 5 items

tests/unit/test cli.py::test list no args PASSED
tests/unit/test cli.py::test list print empty PASSED
tests/unit/test_cli.py::test_list print_many_items PASSED
tests/unit/test_cli.py::test _list dash_o PASSED
tests/unit/test cli.py::test list dash dash owner PASSED

5 passed in 0.06 seconds

Yay! They pass.

http://media.pragprog.com/titles/bopytest/code/ch7/tasks_proj_v2/tests/unit/test_cli.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

tox: Testing Multiple Configurations ¢ 139

This was an extremely fast fly-through of using test doubles and mocks. If
you want to use mocks in your testing, I encourage you to read up on
unittest.mock in the standard library documentation,® and about pytest-mock at
pypi.python.org.”

tox: Testing Multiple Configurations

tox is a command-line tool that allows you to run your complete suite of tests
in multiple environments. We're going to use it to test the Tasks project in
multiple versions of Python. However, tox is not limited to just Python versions.
You can use it to test with different dependency configurations and different
configurations for different operating systems.

In gross generalities, here’s a mental model for how tox works:

tox uses the setup.py file for the package under test to create an installable
source distribution of your package. It looks in tox.ini for a list of environments
and then for each environment...

1. tox creates a virtual environment in a .tox directory.
2. tox pip installs some dependencies.

3. tox pip installs your package from the sdist in step 1.
4. tox runs your tests.

After all of the environments are tested, tox reports a summary of how they
all did.

This makes a lot more sense when you see it in action, so let’s look at how
to modify the Tasks project to use tox to test Python 2.7 and 3.6. I chose
versions 2.7 and 3.6 because they are both already installed on my system.
If you have different versions installed, go ahead and change the envlist line
to match whichever version you have or are willing to install.

The first thing we need to do to the Tasks project is add a tox.ini file at the
same level as setup.py—the top project directory. I'm also going to move anything
that’s in pytest.ini into tox.ini.

Here’s the abbreviated code layout:

6. https://docs.python.org/dev/library/unittest. mock.html

7. https://pypi.python.org/pypi/pytest-mock

http://pypi.python.org
https://docs.python.org/dev/library/unittest.mock.html
https://pypi.python.org/pypi/pytest-mock
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 7. Using pytest with Other Tools ¢ 140

tasks proj v2/

—— setup.py
— tox.ini
—— src
L— tasks
F— _init_ .py
— api.py
l_ P
L— tests
conftest.py
': func
| F— _init__.py
| — test_add.py
[
L— unit

— .
— test_task.py
g PR

Now, here’s what the tox.ini file looks like:

ch7/tasks_proj_v2/tox.ini
tox.ini , put in same dir as setup.py

[tox]
envlist = py27,py36

[testenv]
deps=pytest
commands=pytest

[pytest]
addopts
markers
smoke: Run the smoke test test functions
get: Run the test functions that test tasks.get()

-rsxX -1 --tb=short --strict

Under [tox], we have envlist = py27,py36. This is a shorthand to tell tox to run
our tests using both python2.7 and python3.6.

Under [testenv], the deps=pytest line tells tox to make sure pytest is installed. If
you have multiple test dependencies, you can put them on separate lines.
You can also specify which version to use.

The commands=pytest line tells tox to run pytest in each environment.

Under [pytest], we can put whatever we normally would want to put into pytest.ini
to configure pytest. as discussed in Chapter 6, Configuration, on page 113. In

this case, addopts is used to turn on extra summary information for skips,
xfails, and xpasses (-rsxX) and turn on showing local variables in stack traces

http://media.pragprog.com/titles/bopytest/code/ch7/tasks_proj_v2/tox.ini
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

tox: Testing Multiple Configurations ® 141

(-). It also defaults to shortened stack traces (--tb=short) and makes sure all
markers used in tests are declared first (--strict). The markers section is where
the markers are declared.

Before running tox, you have to make sure you install it:
$ pip install tox

This can be done within a virtual environment.

Then to run tox, just run, well, tox:

$ cd /path/to/code/ch7/tasks_proj_v2

$ tox

GLOB sdist-make: /path/to/code/ch7/tasks proj v2/setup.py

py27 create: /path/to/code/ch7/tasks_proj_v2/.tox/py27

py27 installdeps: pytest

py27 inst: /path/to/code/ch7/tasks proj v2/.tox/dist/tasks-0.1.1.zip

py27 installed: click==6.7,funcsigs==1.0.2,mock==2.0.0,
pbr==3.1.1,py==1.4.34,pytest==3.2.1,
pytest-mock==1.6.2,5ix==1.10.0,tasks==0.1.1,tinydb==3.4.0

py27 runtests: PYTHONHASHSEED='1311894089'

py27 runtests: commands[@] | pytest

test session starts

plugins: mock-1.6.2

collected 62 items

tests/func/test add.py ...

tests/func/test add variety.pycciiiiiiiiiiiiiia,
tests/func/test add variety2.py
tests/func/test api exceptions.py
tests/func/test unique id.py .

tests/unit/test cli.py

tests/unit/test task.py

============== 62 passed in 0.25 seconds ===============

py36 create: /path/to/code/ch7/tasks proj v2/.tox/py36

py36 installdeps: pytest

py36 inst: /path/to/code/ch7/tasks proj v2/.tox/dist/tasks-0.1.1.zip

py36 installed: click==6.7,py==1.4.34,pytest==3.2.1,
pytest-mock==1.6.2,5ix==1.10.0,tasks==0.1.1,tinydb==3.4.0

py36 runtests: PYTHONHASHSEED='1311894089'

py36 runtests: commands[@] | pytest

test session starts

plugins: mock-1.6.2

collected 62 items

tests/func/test add.py ...

tests/func/test add variety.pycciiiiiiiiiiiiiia,
tests/func/test add variety2.py
tests/func/test api exceptions.py
tests/func/test unique id.py .

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 7. Using pytest with Other Tools ¢ 142

tests/unit/test cli.py
tests/unit/test task.py

============== 62 passed in 0.27 seconds ===============
summary
py27: commands succeeded
py36: commands succeeded
congratulations :)

At the end, we have a nice summary of all the test environments and their
outcomes:

summary

py27: commands succeeded
py36: commands succeeded
congratulations :)

Doesn’t that give you a nice, warm, happy feeling? We got a “congratulations”
and a smiley face.

tox is much more powerful than what I'm showing here and deserves your
attention if you are using pytest to test packages intended to be run in multiple
environments. For more detailed information, check out the tox documentation.®

Jenkins Cl: Automating Your Automated Tests

Continuous integration (CI) systems such as Jenkins® are frequently used to
launch test suites after each code commit. pytest includes options to generate
junit.xml-formatted files required by Jenkins and other CI systems to display
test results.

Jenkins is an open source automation server that is frequently used for
continuous integration. Even though Python doesn’t need to be compiled, it's
fairly common practice to use Jenkins or other CI systems to automate the
running and reporting of Python projects. In this section, you’ll take a look
at how the Tasks project might be set up in Jenkins. I'm not going to walk
through the Jenkins installation. It’s different for every operating system, and
instructions are available on the Jenkins website.

When using Jenkins for running pytest suites, there are a few Jenkins plugins
that you may find useful. These have been installed for the example:

¢ build-name-setter: This plugin sets the display name of a build to some-
thing other than #1, #2, #3, and so on.

8. https://tox.readthedocs.io

https://tox.readthedocs.io
https://jenkins.io
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Jenkins Cl: Automating Your Automated Tests ® 143

e Test Results Analyzer plugin: This plugin shows the history of test execu-
tion results in a tabular or graphical format.

You can install plugins by going to the top-level Jenkins page, which is local-
host:8080/manage for me as I'm running it locally, then clicking Manage Jenkins
-> Manage Plugins -> Available. Search for the plugin you want with the filter
box. Check the box for the plugin you want. I usually select “Install without
Restart,” and then on the Installing Plugins/Upgrades page, I select the box
that says, “Restart Jenkins when installation is complete and no jobs are
running.”

We'll look at a complete configuration in case you’'d like to follow along for
the Tasks project. The Jenkins project/item is a “Freestyle Project” named
“tasks,” as shown in the following screen.

@ Jenkins @ search @ Brian Okken |log out

Jenkins tasks

General

Project name tasks

Description

[Plain text] Preview

The configuration is a little odd since we're using versions of the Tasks project
that look like tasks proj, tasks proj v2, and so on, instead of version control.
Therefore, we need to parametrize the project to tell each test session where
to install the Tasks project and where to find the tests. We’ll use a couple of
string parameters, as shown in the next screen, to specify those directories.
(Click “This project is parametrized” to get these options available.)

@ This project is parameterized -i!,-
String Parameter n @
Name tasks_proj_dir @
Default Value tasks_proj ‘ij:‘
Deseription project to install . @
[Plain text] Preview —
String Parameter n vij\
Name start_tests_dir ‘ij‘
Default Value | tasks_proj @
Description | tests to run @

[Plain text] Preview

Add Parameter

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 7. Using pytest with Other Tools ® 144

Next, scroll down to Build Environment, and select “Delete workspace
before build starts” and Set Build Name. Set the name to ${start tests dir}
#${BUILD_NUMBER}, as shown in the next screen.

Build Environment
Delete workspace before build starts
Advanced...

Abort the build if it's stuck
Add timestamps to the Console Output

Set Build Name [2)

Build Name ${start_tests_dir} #${BUILD_NUMBER} 'E‘

~# Advanced...

Next are the Build steps. On a Mac or Unix-like systems, select Add build step->
Execute shell. On Windows, select Add build step->Execute Windows batch command. Since
I'm on a Mac, I used an Execute shell block to call a script, as shown here:

Build
[X]

Execute shell ®

Command | # your paths will be different
code_path=/Users/okken/projects/book/bopytest /Book/code
run_tests=${code_path}/ch7/jenkins/run_tests.bash
bash -e §{run_tests} ${tasks _proj_dir} ${start tests dir} §{WORKSPACE}

See the list of available environment variables

Advanced...

Add build step ~

The content of the text box is:

your paths will be different

code path=/Users/okken/projects/book/bopytest/Book/code
run_tests=${code path}/ch7/jenkins/run_tests.bash

bash -e ${run_tests} ${tasks proj dir} ${start tests dir} ${WORKSPACE}

We use a script instead of putting all of this code into the execute block in
Jenkins so that any changes can be tracked with revision control. Here’s the
script:

ch7/jenkins/run_tests.bash
#!/bin/bash

your paths will be different

top path=/Users/okken/projects/book/bopytest/Book
code path=${top path}/code

venv_path=${top path}/venv

http://media.pragprog.com/titles/bopytest/code/ch7/jenkins/run_tests.bash
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Jenkins Cl: Automating Your Automated Tests ® 145

tasks proj dir=${code path}/$1
start tests dir=${code path}/$2
results dir=$3

click and Python 3,

from http://click.pocoo.org/5/python3/
export LC_ALL=en_US.utf-8

export LANG=en US.utf-8

virtual environment
source ${venv_path}/bin/activate

install project
pip install -e ${tasks proj dir}

run tests
cd ${start tests dir}
pytest --junit-xml=${results dir}/results.xml

The bottom line has pytest --junit-xml=${results_dir}/results.xml. The --junit-xm| flag is
the only thing needed to produce the junit.xml format results file Jenkins needs.

There are other options:

$ pytest --help | grep junit
--junit-xml=path create junit-xml style report file at given path.
--junit-prefix=str prepend prefix to classnames in junit-xml output
junit_suite_name (string) Test suite name for JUnit report

The --junit-prefix can be used as a prefix for every test. This is useful when using
tox and you want to separate the different environment results. junit_suite_name
is a config file option that you can set in the [pytest] section of pytest.ini or tox.ini.
Later we’ll see that the results will have from (pytest) in them. To change pytest
to something else, use junit_suite_name.

Next, we’ll add a post-build action: Add post-build action->Publish Junit test result report.
Fill in the Test report XMLs with results.xml, as shown in the next screen.

Post-build Actions

Publish JUnit test result report @
Test report XMLs results.xml

Fileset ‘includes’ setting that specifies the generated raw XML report files, such
as ‘myproject/targetitest-reports/* xml'. Basedir of the fileset is the workspace
root.

Retain long standard output/error @
Health report amplification factor | 1.0 @
1% failing tests scores as 99% health. 5% failing tests scores as 95% health

Allow empty results Do not fail the build on empty test results (2]

Add post-build action ~

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 7. Using pytest with Other Tools ® 146

That’s it! Now we can run tests through Jenkins. Here are the steps:

1.
2
3
4.
5

6.

Click Save.

Go to the top project.

Click “Build with Parameters.”

Select your directories and click Build.

When it’s done, hover over the title next to the ball in Build History and
select Console Output from the drop-down menu that appears. (Or click
the build name and select Console Output.)

Look at the output and try to figure out what went wrong.

You may be able to skip steps 5 and 6, but I never do. I've never set up a
Jenkins job and had it work the first time. There are usually directory permis-
sion problems or path issues or typos in my script, and so on.

Before we look at the results, let’s run one more version to make it interesting.
Click “Build with Parameters” again. This time, keep the same project direc-
tory, but set ch2 as the start_tests dir, and click Build. After a refresh of the
project top view, you should see the following screen:

Project tasks

[add description

Test Result Trend
ﬁ — zz ...
A

| =T Changes

count

Latest

-
Test 0 ™
3*
Result (3 r
i S
failures /

+3)

tasks_pr..

{just show failures) enlarge
Permalinks

Last build (ch2 #2). 1 hr 57 min ago

Last stable build (tasks proj #1), 2 hr 29 min ago
Last successful build ({tasks proj #1). 2 hr 29 min ago
Last failed build {ch2 #2), 1 hr 57 min ago

Last unsuccessful build (ch2 #2). 1 hr 57 min ago
Last completed build (ch2 #2}, 1 hr 57 min ago

report erratum -

discuss

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Jenkins Cl: Automating Your Automated Tests ® 147

Click inside the graph or on the “Latest Test Result” link to see an overview
of the test session, with “+” icons to expand for test failures.

Clicking on any of the failing test names shows you the individual test failure
information, as shown in the next screen. This is where you see the “(from
pytest)” as part of the test name. This is what’s controlled by the junit_suite_name
in a config file.

Failed

tasks_proj.tests.func.test_unique_id_1.test_unique_id (from pytest)

Failing for the past 1 build (Since @#2)
Took 2 ms.
[‘#add description

Error Message
assert 1 I= 1
Stackirace

def test_unique_id():

id_1 = tasks.unique_id()
id_2 = tasks.unigque_id()
= assert id 1 != id 2
E assert 1 != 1

tasks_proj/tests/func/test_unigque id 1.py:9: AssertionError

Going back to Jenkins > tasks, you can click on Test Results Analyzer to see
a view that lists which tests haven’t been run for different sessions, along
with the pass/fail status (see the following screen):

Jenkins tasks Test Results Analyzer ENABLE AUTO REFRESH

g Back to Dashboard Options | | Download Test (CSV) | Search: Test/Class/Package Expand All | Collapse All
0, staws New Chart See Build Number = 2 1

— Failures children Package-Class-Testmethod names .

= Changes

B Workspace -] tasks_proj.tests.func - N/A

@ Build with Parameters B tasks_proj.tests.func.test_add_variety PASSED NIA

Delete Project . n .
e ! tasks_proj.tests.func.test_api_exceptions | PASSED N/A

tasks_proj.tests.unit - N/A

tests.func N/A PASSED

qa:'f Configure

&~ Test Results Analyzer

)
© © oo

A -

Build History. trend =

You've seen how to run pytest suites with virtual environments from Jenkins,
but there are quite a few other topics to explore around using pytest and
Jenkins together. You can test multiple environments with Jenkins by either
setting up separate Jenkins tasks for each environment, or by having Jenkins
call tox directly. There’s also a nice plugin called Cobertura that is able to

report erratum - discuss

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 7. Using pytest with Other Tools ® 148

display coverage data from coverage.py. Check out the Jenkins documentation'’
for more information.

unittest: Running Legacy Tests with pytest

unittest is the test framework built into the Python standard library. Its
purpose is to test Python itself, but it is often used for project testing, too.
pytest works as a unittest runner, and can run both pytest and unittest tests
in the same session.

Let’s pretend that when the Tasks project started, it used unittest instead of
pytest for testing. And perhaps there are a lot of tests already written. Fortunate-
ly, you can use pytest to run unittest-based tests. This might be a reasonable
option if you are migrating your testing effort from unittest to pytest. You can
leave all the old tests as unittest, and write new ones in pytest. You can also
gradually migrate older tests as you have time, or as changes are needed. There
are a couple of issues that might trip you up in the migration, however, and I'll
address some of those here. First, let’s look at a test written for unittest:

ch7/unittest/test_delete_unittest.py
import unittest

import shutil

import tempfile

import tasks

from tasks import Task

def setUpModule():
"""Make temp dir, initialize DB."""
global temp dir
temp dir = tempfile.mkdtemp()
tasks.start tasks db(str(temp dir), 'tiny')

def tearDownModule():
"""Clean up DB, remove temp dir."""
tasks.stop_tasks db()
shutil.rmtree(temp dir)

class TestNonEmpty(unittest.TestCase):

def setUp(self):
tasks.delete all() # start empty
add a few items, saving ids
self.ids = []
self.ids.append(tasks.add(Task('One', 'Brian', True)))
self.ids.append(tasks.add(Task('Two', 'Still Brian', False)))
self.ids.append(tasks.add(Task('Three', 'Not Brian', False)))

10. https://wiki.jenkins-ci.org/display/JENKINS/Cobertura+Plugin

http://media.pragprog.com/titles/bopytest/code/ch7/unittest/test_delete_unittest.py
https://wiki.jenkins-ci.org/display/JENKINS/Cobertura+Plugin
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

unittest: Running Legacy Tests with pytest ® 149

def test delete decreases count(self):
GIVEN 3 items
self.assertEqual(tasks.count(), 3)
WHEN we delete one
tasks.delete(self.ids[0])
THEN count decreases by 1
self.assertEqual(tasks.count(), 2)

The actual test is at the bottom, test delete decreases_count(). The rest of the code
is there for setup and teardown. This test runs fine in unittest:

$ cd /path/to/code/ch7/unittest
$ python -m unittest -v test_delete_unittest.py
test delete decreases count (test delete unittest.TestNonEmpty) ... ok

Ran 1 test in 0.024s
(1] 4
It also runs fine in pytest:

$ pytest -v test_delete_unittest.py
test session starts

collected 1 items

test delete unittest.py::TestNonEmpty::test delete decreases count PASSED

1 passed in 0.02 seconds

This is great if you just want to use pytest as a test runner for unittest.
However, our premise is that the Tasks project is migrating to pytest. Let’s
say we want to migrate tests one at a time and run both unittest and pytest
versions at the same time until we are confident in the pytest versions. Let’s
look at a rewrite for this test and then try running them both:

ch7/unittest/test_delete_pytest.py
import tasks

def test delete decreases count(db with 3 tasks):
ids = [t.id for t in tasks.list tasks()]
GIVEN 3 items
assert tasks.count() ==
WHEN we delete one
tasks.delete(ids[0])
THEN count decreases by 1
assert tasks.count() == 2

The fixtures we've been using for the Tasks project, including db_with_3_tasks
introduced in UsmgMultlpleleturesonpage55 help set up the database

before the test. It's a much smaller file, even though the test function itself
is almost identical.

http://media.pragprog.com/titles/bopytest/code/ch7/unittest/test_delete_pytest.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 7. Using pytest with Other Tools ¢ 150

Both tests pass individually:

$ pytest -q test_delete_pytest.py

1 passed in 0.01 seconds
$ pytest -q test_delete_unittest.py

1 passed in 0.02 seconds

You can even run them together if—and only if—you make sure the unittest
version runs first:

$ pytest -v test_delete_unittest.py test_delete_pytest.py
test session starts

collected 2 items

test delete unittest.py::TestNonEmpty::test delete decreases count PASSED
test delete pytest.py::test delete decreases count[tiny] PASSED

2 passed in 0.07 seconds

If you run the pytest version first, something goes haywire:

$ pytest -v test_delete_pytest.py test_delete_unittest.py
test session starts

collected 2 items

test delete pytest.py::test delete decreases count[tiny] PASSED
test delete unittest.py::TestNonEmpty::test delete decreases count PASSED
test delete unittest.py::TestNonEmpty::test delete decreases count ERROR

ERRORS
ERROR at teardown of TestNonEmpty.test delete decreases count

tmpdir factory = < pytest.tmpdir.TempdirFactory object at 0x1038a3128>
request = <SubRequest 'tasks db session'
for <Function 'test delete decreases count[tiny]'>>

@pytest.fixture(scope='session', params=['tiny'])
def tasks db session(tmpdir factory, request):
temp dir = tmpdir_ factory.mktemp('temp')
tasks.start tasks db(str(temp dir), request.param)
yield # this is where the testing happens
> tasks.stop tasks db()

conftest.py:11:

def stop tasks db(): # type: () -> None
global tasksdb
> _tasksdb.stop tasks db()
E AttributeError: 'NoneType' object has no attribute 'stop tasks db'

../tasks proj v2/src/tasks/api.py:104: AttributeError
2 passed, 1 error in 0.13 seconds

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

unittest: Running Legacy Tests with pytest ® 151

You can see that something goes wrong at the end, after both tests have run
and passed.

Let’s use --setup-show to investigate further:

$ pytest -q --tb=no --setup-show test_delete_pytest.py test_delete_unittest.py

SETUP S tmpdir factory
SETUP S tasks db session (fixtures used: tmpdir factory)[tiny]
SETUP F tasks db (fixtures used: tasks db session)
SETUP S tasks just a few
SETUP F db with 3 tasks (fixtures used: tasks db, tasks just a few)
test delete pytest.py::test delete decreases count[tiny]
(fixtures used: db with 3 tasks, tasks db, tasks db session,
tasks just a few, tmpdir factory).
TEARDOWN F db with 3 tasks
TEARDOWN F tasks db
test delete unittest.py::TestNonEmpty::test delete decreases count.
TEARDOWN S tasks just a few
TEARDOWN S tasks db session[tiny]
TEARDOWN S tmpdir factoryE
2 passed, 1 error in 0.08 seconds

The session scope teardown fixtures are run after all the tests, including the
unittest tests. This stumped me for a bit until I realized that the tearDownModule()
in the unittest module was shutting down the connection to the database.
The tasks_db_session() teardown from pytest was then trying to do the same thing
afterward.

Fix the problem by using the pytest session scope fixture with the unittest
tests. This is possible by adding @pytest.mark.usefixtures() decorators at the class
or method level:

ch7/unittest/test_delete_unittest_fix.py
import pytest

import unittest

import tasks

from tasks import Task

@pytest.mark.usefixtures('tasks db session')
class TestNonEmpty(unittest.TestCase):

def setUp(self):
tasks.delete all() # start empty
add a few items, saving ids
self.ids = []
self.ids.append(tasks.add(Task('One', 'Brian', True)))
self.ids.append(tasks.add(Task('Two', 'Still Brian', False)))
self.ids.append(tasks.add(Task('Three', 'Not Brian', False)))

http://media.pragprog.com/titles/bopytest/code/ch7/unittest/test_delete_unittest_fix.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 7. Using pytest with Other Tools ® 152

def test delete decreases count(self):
GIVEN 3 items
self.assertEqual(tasks.count(), 3)
WHEN we delete one
tasks.delete(self.ids[0])
THEN count decreases by 1
self.assertEqual(tasks.count(), 2)

Now both unittest and pytest can cooperate and not run into each other:

$ pytest -v test_delete_pytest.py test_delete_unittest_fix.py
test session starts
plugins: mock-1.6.0, cov-2.5.1
collected 2 items

test delete pytest.py::test delete decreases count PASSED
test delete unittest fix.py::TestNonEmpty::test delete decreases count PASSED

2 passed in 0.02 seconds

Note that this is only necessary for session scope resources shared by unittest
and pytest. As discussed earlier in Marking Test Functions, on page 31, you

can also use pytest markers on unittest tests, such as @pytest.mark.skip() and
@pytest.mark.xfail(), and user markers like @pytest.mark.foo().

Going back to the unittest example, we still used setUp() to save the ids of the
tasks. Aside from highlighting that getting a list of ids from tasks is obviously
an overlooked API method, it also points to a slight issue with using
pytst.mark.usefixtures with unittest: we can’t pass data from a fixture to a unittest
function directly.

However, you can pass it through the cls object that is part of the request object.
In the next example, setUp() code has been moved into a function scope fixture
that passes the ids through request.cls.ids:

ch7/unittest/test_delete_unittest_fix2.py
import pytest

import unittest

import tasks

from tasks import Task

@pytest.fixture()

def tasks db _non _empty(tasks db session, request):
tasks.delete all() # start empty
add a few items, saving ids
ids = []
ids.append(tasks.add(Task('One', 'Brian', True)))
ids.append(tasks.add(Task('Two', 'Still Brian', False)))
ids.append(tasks.add(Task('Three', 'Not Brian', False)))
request.cls.ids = ids

http://media.pragprog.com/titles/bopytest/code/ch7/unittest/test_delete_unittest_fix2.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Exercises ® 153

@pytest.mark.usefixtures('tasks db non empty')
class TestNonEmpty(unittest.TestCase):

def test delete decreases count(self):
GIVEN 3 items
self.assertEqual(tasks.count(), 3)
WHEN we delete one
tasks.delete(self.ids[0])
THEN count decreases by 1
self.assertEqual(tasks.count(), 2)

The test accesses the ids list through self.ids, just like before.

The ability to use marks has a limitation: you cannot use parametrized fixtures
with unittest-based tests. However, when looking at the last example with
unittest using pytest fixtures, it’s not that far from rewriting it in pytest form.
Remove the unittest.TestCase base class and change the self.assertEqual() calls to
straight assert calls, and you'd be there.

Another limitation with running unittest with pytest is that unittest subtests
will stop at the first failure, while unittest will run each subtest, regardless
of failures. When all subtests pass, pytest runs all of them. Because you won’t
see any false-positive results because of this limitation, I consider this a minor
difference.

Exercises

1. The test code in ch2 has a few intentionally failing tests. Use --pdb while
running these tests. Try it without the -x option and the debugger will
open multiple times, once for each failure.

2. Try fixing the code and rerunning tests with --If --pdb to just run the failed
tests and use the debugger. Trying out debugging tools in a casual envi-
ronment where you can play around and not be worried about deadlines
and fixes is important.

3. We noticed lots of missing tests during our coverage exploration. One
topic missing is to test tasks.update(). Write some tests of that in the func
directory.

4. Run coverage.py. What other tests are missing? If you covered api.py, do you
think it would be fully tested?

5. Add some tests to test cli.py to check the command-line interface for tasks
update using mock.

6. Run your new tests (along with all the old ones) against at least two Python
versions with tox.

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Chapter 7. Using pytest with Other Tools ® 154

7. Try using Jenkins to graph all the different tasks_proj versions and test
permutations in the chapters.

What's Next

You are definitely ready to go out and try pytest with your own projects. And
check out the appendixes that follow. If you've made it this far, I'll assume
you no longer need help with pip or virtual environments. However, you may
not have looked at Appendix 3, Plugin Sampler Pack, on page 163. If you enjoyed

closer resembles traditional xUnit testing tools.

Also, keep in touch! Check out the book’s webpage'' and use the discussion
forum'? and errata'® pages to help me keep the book lean, relevant, and easy
to follow. This book is intended to be a living document. I want to keep it up
to date and relevant for every wave of new pytest users.

11. https://pragprog.com/titles/bopytest

https://pragprog.com/titles/bopytest
https://forums.pragprog.com/forums/438
https://pragprog.com/titles/bopytest/errata
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

APPENDIX 1

Virtual Environments

Python virtual environments enable you to set up a Python sandbox with its
own set of packages separate from the system site-packages in which to work.
There are many reasons to use virtual environments, such as if you have
multiple services running with the same Python installation, but with different
packages and package version requirements. In addition, you might find it
handy to keep the dependent package requirements separate for every Python
project you work on. Virtual environments let you do that.

The PyPI version of virtualenv works in most environments. As of Python 3.3,
the venv virtual environment module is included as part of the standard library.
However, some problems with venv have been reported on Ubuntu. Since
virtualenv works with Python 3.6 (and as far back as Python 2.6) and on
Ubuntu, we’ll use virtualenv in this quick overview.

Here’s how to set up a virtual environment in macOS and Linux:

$ pip install -U virtualenv
$ virtualenv -p /path/to/a/python.exe /path/to/env_name
$ source /path/to/env_name/bin/activate
(env_name) $
. do your work ...
(env_name) $ deactivate

You can also drive the process from Python:

$ python3.6 -m pip install -U virtualenv
$ python3.6 -m virtualenv env_name
$ source env_name/bin/activate
(env_name) $

. do your work ...
(env_name) $ deactivate

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Appendix 1. Virtual Environments ® 156

In Windows, there’s a change to the activate line:

C:/> pip install -U virtualenv
C:/> virtualenv -p /path/to/a/python.exe /path/to/env_name
C:/> /path/to/env_name/Scripts/activate.bat
(env_name) C:/>
. do your work ...
(env_name) C:/> deactivate

You can do the same trick of driving everything from the Python executable
on Windows as well.

In practice, setting up a virtual environment can be done in fewer steps. For
example, I don’t often update virtualenv if I know I've updated it not too long
ago. I also usually put the virtual environment directory, env_name, directly in
my project’s top directory.

Therefore, the steps are usually just the following:

$ cd /path/to/my_proj
$ virtualenv -p $(which python3.6) my_proj_venv
$ source my_proj_venv/bin/activate
(my proj venv) $
. do your work ...
(my proj venv) $ deactivate

I've also seen two additional installation methods that are interesting and
could work for you:

1. Put the virtual environment in the project directory (as was done in the
previous code), but name the env directory something consistent, such
as venv or .venv. The benefit of this is that you can put venv or .venv in your
global .gitignore file. The downside is that the environment name hint in
the command prompt just tells you that you are using a virtual environ-
ment, but not which one.

2. Put all virtual environments into a common directory, such as ~/venvs/.
Now the environment names will be different, letting the command prompt
be more useful. You also don’t need to worry about .gitignore, since it’s not
in your project tree. Finally, this directory is one place to look if you forget
all of the projects you're working on.

Remember, a virtual environment is a directory with links back to the python.exe
file and the pip.exe file of the site-wide Python version it’s using. But anything
you install is installed in the virtual environment directory, and not in the
global site-packages directory. When you're done with a virtual environment,
you can just delete the directory and it completely disappears.

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Appendix 1. Virtual Environments ® 157

I've covered the basics and common use case of virtualenv. However, virtualenv
is a flexible tool with many options. Be sure to check out virtualenv --help. It may
preemptively answer questions you may have about your specific situation.
Also, the Python Packaging Authority docs on virtualenv' are worth reading if
you still have questions.

1. https://virtualenv.pypa.io

https://virtualenv.pypa.io
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

APPENDIX 2

pip

pip is the tool used to install Python packages, and it is installed as part of
your Python installation. pip supposedly is a recursive acronym that stands
for Pip Installs Python or Pip Installs Packages. (Programmers can be pretty
nerdy with their humor.) If you have more than one version of Python installed
on your system, each version has its own pip package manager.

By default, when you run pip install something, pip will:

1. Connect to the PyPI repository at https://pypi.python.org/pypi.

2. Look for a package called something.

3. Download the appropriate version of something for your version of Python
and your system.

4. Install something into the site-packages directory of your Python installation
that was used to call pip.

This is a gross understatement of what pip does—it also does cool stuff like
setting up scripts defined by the package, wheel caching, and more.

As mentioned, each installation of Python has its own version of pip tied to it.
If you're using virtual environments, pip and python are automatically linked
to whichever Python version you specified when creating the virtual environ-
ment. If you aren’t using virtual environments, and you have multiple Python
versions installed, such as python3.5 and python3.6, you will probably want to
use python3.5 -m pip or python3.6 -m pip instead of pip directly. It works just the
same. (For the examples in this appendix, I assume you are using virtual
environments so that pip works just fine as-is.)

https://pypi.python.org/pypi
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Appendix 2. pip ® 160

To check the version of pip and which version of Python it’s tied to, use pip --
version:

(my env) $ pip --version
pip 9.0.1 from /path/to/code/my env/lib/python3.6/site-packages (python 3.6)

To list the packages you have currently installed with pip, use pip list. If there’s
something there you don’t want anymore, you can uninstall it with pip uninstall
something.

(my env) $ pip list

pip (9.0.1)

setuptools (36.2.7)

wheel (0.29.0)

(my env) $ pip install pytest

Installing collected packages: py, pytest
Successfully installed py-1.4.34 pytest-3.2.1
(my env) $ pip list

pip (9.0.1)

py (1.4.34)

pytest (3.2.1)

setuptools (36.2.7)

wheel (0.29.0)

As shown in this example, pip installs the package you want and also any
dependencies that aren’t already installed.

pip is pretty flexible. It can install things from other places, such as GitHub,
your own servers, a shared directory, or a local package you're developing
yourself, and it always sticks the packages in site-packages unless you're using
Python virtual environments.

if it’s a release version PyPI knows about:

$ pip install pytest==3.2.1

You can use pip to install a local package that has a setup.py file in it:
$ pip install /path/to/package

Use ./package_name if you are in the same directory as the package to install it
locally:
$ cd /path/just/above/package

$ pip install my_package # pip is looking in PyPI for "my package"
$ pip install ./my_package # now pip looks locally

http://pypi.python.org
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Appendix 2. pip ® 161

You can use pip to install packages that have been downloaded as zip files or
wheels without unpacking them.

You can also use pip to download a lot of files at once using a requirements.txt file:

(my env) $ cat requirements.txt
pytest==3.2.1

pytest-xdist==1.20.0

(my env) $ pip install -r requirements.txt

Successfully installed apipkg-1.4 execnet-1.4.1 pytest-3.2.1 pytest-xdist-1.20.0

You can use pip to download a bunch of various versions into a local cache
of packages, and then point pip there instead of PyPI to install them into vir-
tual environments later, even when offline.

The following downloads pytest and all dependencies:

(my env) $ mkdir ~/.pipcache
(my env) $ pip download -d ~/pipcache pytest
Collecting pytest

Using cached pytest-3.2.1-py2.py3-none-any.whl

Saved /Users/okken/pipcache/pytest-3.2.1-py2.py3-none-any.whl
Collecting py>=1.4.33 (from pytest)

Using cached py-1.4.34-py2.py3-none-any.whl

Saved /Users/okken/pipcache/py-1.4.34-py2.py3-none-any.whl
Collecting setuptools (from pytest)

Using cached setuptools-36.2.7-py2.py3-none-any.whl

Saved /Users/okken/pipcache/setuptools-36.2.7-py2.py3-none-any.whl
Successfully downloaded pytest py setuptools

Later, even if you're offline, you can install from the cache:

(my env) $ pip install --no-index --find-links=~/pipcache pytest
Collecting pytest
Collecting py>=1.4.33 (from pytest)

Installing collected packages: py, pytest
Successfully installed py-1.4.34 pytest-3.2.1

This is great for situations like running tox or continuous integration test
suites without needing to grab packages from PyPI. I also use this method to
grab a bunch of packages before taking a trip so that I can code on the plane.

The Python Packaging Authority documentation' is a great resource for more
information on pip.

1. https://pip.pypa.io

https://pip.pypa.io
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

APPENDIX 3

Plugin Sampler Pack

Plugins are the booster rockets that enable you to get even more power out
of pytest. So many useful plugins are available, it’s difficult to pick just a
handful to showcase. You've already seen the pytest-cov plugin in Coverage.py:

give you just a taste of what else is out there.

All of the plugins featured here are available on PyPI and are installed with
pip install <plugin-name>.

Plugins That Change the Normal Test Run Flow

The following plugins in some way change how pytest runs your tests.

pytest-repeat: Run Tests More Than Once

To run tests more than once per session, use the pytest-repeat plugin.1 This
plugin is useful if you have an intermittent failure in a test.

Following is a normal test run of tests that start with test_list from ch7/tasks
_proj_v2:

$ cd /path/to/code/ch7/tasks_proj_v2

$ pip install .

$ pip install pytest-repeat

$ pytest -v -k test_list

test session starts
plugins: repeat-0.4.1, mock-1.6.2
collected 62 items

tests/func/test api exceptions.py::test list raises PASSED
tests/unit/test cli.py::test list no args PASSED

1. https://pypi.python.org/pypi/pytest-repeat

https://pypi.python.org/pypi/pytest-repeat
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Appendix 3. Plugin Sampler Pack ® 164

tests/unit/test cli.py::test list print empty PASSED
tests/unit/test cli.py::test list print many items PASSED
tests/unit/test cli.py::test list dash o PASSED
tests/unit/test cli.py::test list dash dash owner PASSED

56 tests deselected
=========== 6 passed, 56 deselected in 0.10 seconds ============

With the pytest-repeat plugin, you can use --count to run everything twice:

$ pytest --count=2 -v -k test_list

test session starts
plugins: repeat-0.4.1, mock-1.6.2
collected 124 items

tests/func/test api exceptions.py::test list raises[1/2] PASSED
tests/func/test api exceptions.py::test list raises[2/2] PASSED
tests/unit/test cli.py::test list no args[1/2] PASSED
tests/unit/test cli.py::test list no args[2/2] PASSED
tests/unit/test cli.py::test list print empty[1/2] PASSED
tests/unit/test cli.py::test list print empty[2/2] PASSED
tests/unit/test cli.py::test list print many items[1/2] PASSED
tests/unit/test cli.py::test list print many items[2/2] PASSED
tests/unit/test_cli.py::test list dash_o[1/2] PASSED
tests/unit/test cli.py::test list dash o[2/2] PASSED
tests/unit/test cli.py::test list dash dash owner[1/2] PASSED
tests/unit/test cli.py::test list dash dash owner[2/2] PASSED

112 tests deselected
========== 12 passed, 112 deselected in 0.16 seconds ===========

You can repeat a subset of the tests or just one, and even choose to run it
1,000 times overnight if you want to see if you can catch the failure. You can
also set it to stop on the first failure.

pytest-xdist: Run Tests in Parallel

Usually all tests run sequentially. And that’s just what you want if your tests
hit a resource that can only be accessed by one client at a time. However, if
your tests do not need access to a shared resource, you could speed up test
sessions by running multiple tests in parallel. The pytest-xdist plugin allows
you to do that. You can specify multiple processors and run many tests in
parallel. You can even push off tests onto other machines and use more than
one computer.

Here’s a test that takes at least a second to run, with parametrization such
that it runs ten times:
appendices/xdist/test_parallel.py

import pytest
import time

http://media.pragprog.com/titles/bopytest/code/appendices/xdist/test_parallel.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Plugins That Change the Normal Test Run Flow ¢ 165

@pytest.mark.parametrize('x', list(range(10)))
def test something(x):
time.sleep(1)

Notice that it takes over ten seconds to run normally:

$ pip install pytest-xdist

$ cd /path/to/code/appendices/xdist

$ pytest test_parallel.py

test session starts
plugins: xdist-1.20.0, forked-0.2
collected 10 items

test parallel.py

10 passed in 10.07 seconds

With the pytest-xdist plugin, you can use -n numprocesses to run each test in a
subprocess, and use -n auto to automatically detect the number of CPUs on
the system. Here’s the same test run on multiple processors:

$ pytest -n auto test_parallel.py

test session starts
plugins: xdist-1.20.0, forked-0.2

gwd [10] / gwl [10] / gw2 [10] / gw3 [10]
scheduling tests via LoadScheduling

10 passed in 4.27 seconds

It’s not a silver bullet to speed up your test times by a factor of the number
of processors you have—there is overhead time. However, many testing sce-
narios enable you to run tests in parallel. And when the tests are long, you
may as well let them run in parallel to speed up your test time.

The pytest-xdist plugin does a lot more than we've covered here, including the
ability to offload tests to different computers altogether, so be sure to read
more about the pytest-xdist plugin® on PyPI.

pytest-timeout: Put Time Limits on Your Tests

There are no normal timeout periods for tests in pytest. However, if you're
working with resources that may occasionally disappear, such as web services,
it’s a good idea to put some time restrictions on your tests.

The pytest-timeout plugin® does just that. It allows you pass a timeout period
on the command line or mark individual tests with timeout periods in seconds.

2. https://pypi.python.org/pypi/pytest-xdist

3. https://pypi.python.org/pypi/pytest-timeout

https://pypi.python.org/pypi/pytest-xdist
https://pypi.python.org/pypi/pytest-timeout
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Appendix 3. Plugin Sampler Pack ® 166

The mark overrides the command-line timeout so that the test can be either
longer or shorter than the timeout limit.

Let’s run the tests from the previous example (with one-second sleeps) with
a half-second timeout:

$ cd /path/to/code/appendices/xdist

$ pip install pytest-timeout

$ pytest --timeout=0.5 -x test_parallel.py
test session starts
plugins: xdist-1.20.0, timeout-1.2.0, forked-0.2
timeout: 0.5s method: signal

collected 10 items

test parallel.py F

FAILURES
test something[0]

x =0

@pytest.mark.parametrize('x', list(range(10)))
def test something(x):

> time.sleep(1)

E Failed: Timeout >0.5s

test parallel.py:6: Failed

1 failed in 0.68 seconds

The -x stops testing after the first failure.

Plugins That Alter or Enhance Output

These plugins don’t change how test are run, but they do change the output
you see.

pytest-instafail: See Details of Failures and Errors as They Happen

Usually pytest displays the status of each test, and then after all the tests
are finished, pytest displays the tracebacks of the failed or errored tests. If
your test suite is relatively fast, that might be just fine. But if your test suite
takes quite a bit of time, you may want to see the tracebacks as they happen,
rather than wait until the end. This is the functionality of the pytest-instafail
plugin.* When tests are run with the --instafail flag, the failures and errors
appear right away.

4. https://pypi.python.org/pypi/pytest-instafail

https://pypi.python.org/pypi/pytest-instafail
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Plugins That Alter or Enhance Output ® 167

Here’s a test with normal failures at the end:

$ cd /path/to/code/appendices/xdist

$ pytest --timeout=0.5 --tb=line --maxfail=2 test_parallel.py
test session starts
plugins: xdist-1.20.0, timeout-1.2.0, forked-0.2
timeout: 0.5s method: signal

collected 10 items

test parallel.py FF

FAILURES
/path/to/code/appendices/xdist/test parallel.py:6: Failed: Timeout >0.5s
/path/to/code/appendices/xdist/test parallel.py:6: Failed: Timeout >0.5s

2 failed in 1.20 seconds

Here’s the same test with --instafail:

$ pytest --instafail --timeout=0.5 --tb=line --maxfail=2 test_parallel.py
test session starts
plugins: xdist-1.20.0, timeout-1.2.0, instafail-0.3.0, forked-0.2
timeout: 0.5s method: signal

collected 10 items

test parallel.py F
/path/to/code/appendices/xdist/test parallel.py:6: Failed: Timeout >0.5s
test parallel.py F
/path/to/code/appendices/xdist/test parallel.py:6: Failed: Timeout >0.5s

2 failed in 1.19 seconds

The --instafail functionality is especially useful for long-running test suites when
someone is monitoring the test output. You can read the test failures,
including the stack trace, without stopping the test suite.

pytest-sugar: Instafail + Colors + Progress Bar

The pytest-sugar plugin® lets you see status not just as characters, but also in
color. It also shows failure and error tracebacks during execution, and has
a cool progress bar to the right of the shell.

A test without sugar is shown on page 168.

5. https://pypi.python.org/pypi/pytest-sugar

https://pypi.python.org/pypi/pytest-sugar
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Appendix 3. Plugin Sampler Pack ® 168

{venv) $ cd /fUsersfokken/code/ch7/tasks_proj_v2/

{venv) % pytest

————————————————————————————————— test session starts =================================
plugins: xdist-1.28.8, mock-1.6.2, forked-8.2

collected 62 items

tests/func/test_add.py ...

tests/func/test_add_variety.py covvuerrieensinarsnnnnnnnnsns
tests/func/test_add_variety2.pycuuus
tests/func/test_api_exceptions.py ceevieens
tests/func/test_unique_id.py .

tests/unit/test_cli.py «.ouus

tests/unit/test_task.py

And here’s the test with sugar:

(venv)] % pytest

Test session starts (platform: darwin, Python 3.6.2, pytest 3.2.1, pytest-sugar ©.9.0)
rootdir: /JUsers/okken/code/sch?/tasks_proj_vZ, inifile: tox.ini

plugins: xdist-1.20.8, sugar-08.9.8, mock-1.6.2, forked-8.2
————————————————————————————————— test session starts =s===============================

‘test_add_varieby.py v oo vidd o is s i s s i fdsd fsssds
‘test_add_variety2.py vooverriirss
‘test_api_exceptions.py v srrsss
‘test_unique_id.py -

test_cli.py «- 7o

nit/test_task.py soov

Results (@.5@s):
62 passed

The checkmarks (or x’s for failures) show up as the tests finish. The progress
bars grow in real time, too. It's quite satisfying to watch.

pytest-emoji: Add Some Fun to Your Tests

The pytest-emoji plugin6 allows you to replace all of the test status characters
with emojis. You can also change the emojis if you don'’t like the ones picked
by the plugin author. Although this project is perhaps an example of silliness,
it’s included in this list because it’s a small plugin and is a good example on
which to base your own plugins.

To demonstrate the emoji plugin in action, following is sample code that
produces pass, fail, skip, xfail, xpass, and error. Here it is with normal output
and tracebacks turned off:

{wvenv) $ cd /Users/okken/code/appendices/foutcomes/

{venv) % pytest --tb=no

————————————————————————————————— test session starts =================================
collected 6 items

test_outcomes.py .FxXsE

==== 1 failed, 1 passed, 1 skipped, 1 xfailed, 1 xpassed, 1 error in 8.87 seconds =====

6. https://pypi.python.org/pypi/pytest-emoji

https://pypi.python.org/pypi/pytest-emoji
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Plugins That Alter or Enhance Output ® 169

Here it is with verbose, -v:

{venv) % pytest —tb=no -v

collected 6 items

test_outcomes.py::test_pass PASSED
test_outcomes.py::test_fail FAILED
test_outcomes.py::test_xfail
test_outcomes.py::test_xpass
test_outcomes.py::test_skip
test_outcomes.py::test_error ERROR

==== 1 failed, 1 passed, 1 skipped, 1 xfailed, 1 xpassed, 1 error in 9.86 seconds =====
Now, here is the sample code with --emoji:

{venv) $ pytest ——tb=no ——emoji

plugins: emoji-@.1.@
collected & items

test_outcomes.py & &0 & @
==== 1 failed, 1 passed, 1 skipped, 1 xfailed, 1 xpassed, 1 error in 8.87 seconds ===:

And then with both -v and --emoji:

{venv) $ pytest ——tb=no -v ——emoji

————————————————————————————————— test session starts =================================
plugins: emoji-8.1.8

collected 6 items

test_outcomes.py::test_pass PASSED
test_outcomes.py::test_fail FAILED
test_outcomes.py::test_xfail

test_outcomes.py::test_xpass XPASS W
test_outcomes.py::test_skip X
test_outcomes.py::test_error ERROR et

WAL ¢

==== 1 failed, 1 passed, 1 skipped, 1 xfailed, 1 xpassed, 1 error in 8.86 seconds =====

It’s a pretty fun plugin, but don’t dismiss it as silly out of hand; it allows you
to change the emoji using hook functions. It’s one of the few pytest plugins
that demonstrates how to add hook functions to plugin code.

pytest-html: Generate HTML Reports for Test Sessions

The pytest-html plugin” is quite useful in conjunction with continuous integra-
tion, or in systems with large, long-running test suites. It creates a webpage
to view the test results for a pytest session. The HTML report created includes
the ability to filter for type of test result: passed, skipped, failed, errors,
expected failures, and unexpected passes. You can also sort by test name,
duration, or status. And you can include extra metadata in the report,
including screenshots or data sets. If you have reporting needs greater than
pass vs. fail, be sure to try out pytest-html.

7. https://pypi.python.org/pypi/pytest-html

https://pypi.python.org/pypi/pytest-html
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Appendix 3. Plugin Sampler Pack ® 170

The pytest-html plugin is really easy to start. Just add --html=report_name.html:

$ cd /path/to/code/appendices/outcomes
$ pytest --html=report.html
test session starts

metadata:
collected 6 items

test outcomes.py .FxXsE

generated html file: /path/to/code/appendices/outcomes/report.html
ERRORS
ERROR at setup of test error

@pytest.fixture()
def flaky fixture():

> assert 1 ==

E assert 1 == 2

test outcomes.py:24: AssertionError
FAILURES
test fail

def test fail()
> assert 1 == 2
E assert 1 == 2

test outcomes.py:8: AssertionError
1 failed, 1 passed, 1 skipped, 1 xfailed, 1 xpassed, 1 error in 0.08 seconds
$ open report.html

This produces a report that includes the information about the test session
and a results and summary page.

The following screen shows the session environment information and summary:

Report generated on 22-Aug-2017 at 22:38:25 by v1.15.2

Environment

Summary
4 tests ran in 0.08 seconds.
{(Unjcheck the boxes to filter the results.

@ 1 passed @ 1 failed, @1 errors @ 1 unexpected passes

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Plugins for Static Analysis ® 171

The next screen shows the summary and results:

{Un}check the boxes to filter the results.

@ 1 passed, B 1 failed, &1 errors B 1 unexpected passes

Results

Show all details / Hide all details

A Result Test
Error test_outcomes.py:test_efor:.setup
Fpytest.fixture()
def flaky fixture():
= assert 1 == 2
E assert 1 == 2
test _cutcomes.py:29%: AssertionError
Failed test_outcomes.py:test_fa

def test_fail():

> assert 1 == 2

E assert 1 == 2
test_cutcomes.py:%: RAssertionError

test_outcomes.py::test_xfa

Bpytest.mark.xfail ()

def test xfail():
= assert 1 == 2
E assert 1 == 2

test_cutcomes.py:14: AssertionError
XPassed test_outcomes.py:.test_xpass
Ne log ocutput captured.
test_outcomes.py::test_skip::setup
{'test outceomes.py', 21, 'Skipped: unconditional skip')

Passed test_outcomes.py: test_pass

The report includes JavaScript that allows you to filter and sort, and you can
add extra information to the report, including images. If you need to produce
reports for test results, this plugin is worth checking out.

Plugins for Static Analysis

Static analysis tools run checks against your code without running it. The Python
community has developed some of these tools. The following plugins allow you
to run a static analysis tool against both your code under test and the tests
themselves in the same session. Static analysis failures show up as test failures.

report erratum - discuss

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Appendix 3. Plugin Sampler Pack ® 172

pytest-pycodestyle, pytest-pep8: Comply with Python’s Style Guide

PEP 8 is a style guide for Python code.® It is enforced for standard library
code, and is used by many—if not most—Python developers, open source or
otherwise. The pycodestyle’” command-line tool can be used to check Python
source code to see if it complies with PEP 8. Use the pytest-pycodestyle plugin10
to run pycodestyle on code in your project, including test code, with the --pep8
flag. The pycodestyle tool used to be called pep8,'' and pytest-pep8'” is available if
you want to run the legacy tool.

pytest-flake8: Check for Style Plus Linting

While pep8 checks for style, flake8 is a full linter that also checks for PEP 8
style. The flake8 package' is a collection of different style and static analysis
tools all rolled into one. It includes lots of options, but has reasonable default
behavior. With the pytest-flake8 plugin,'* you can run all of your source code
and test code through flake8 and get a failure if something isn’t right. It checks
for PEP 8, as well as for logic errors. Use the --flake8 option to run flake8 during
a pytest session. You can extend flake8 with plugins that offer even more
checks, such as flake8-docstrings,'® which adds pydocstyle checks for PEP 257,
Python’s docstring conventions.'®

Plugins for Web Development

Web-based projects have their own testing hoops to jump through. Even
pytest doesn’t make testing web applications trivial. However, quite a few
pytest plugins help make it easier.

pytest-selenium: Test with a Web Browser

Selenium is a project that is used to automate control of a web browser. The
pytest-selenium plugin'” is the Python binding for it. With it, you can launch a
web browser and use it to open URLSs, exercise web applications, and fill out

8. https://www.python.org/dev/peps/pep-0008

https://www.python.org/dev/peps/pep-0008
https://pypi.python.org/pypi/pycodestyle
https://pypi.python.org/pypi/pytest-pycodestyle
https://pypi.python.org/pypi/pep8
https://pypi.python.org/pypi/pytest-pep8
https://pypi.python.org/pypi/flake8
https://pypi.python.org/pypi/pytest-flake8
https://pypi.python.org/pypi/flake8-docstrings
https://www.python.org/dev/peps/pep-0257
https://pypi.python.org/pypi/pytest-selenium
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Plugins for Web Development ® 173

forms. You can also programmatically control the browser to test a web site
or web application.

pytest-django: Test Django Applications

Django is a popular Python-based web development framework. It comes with
testing hooks that allow you to test different parts of a Django application
without having to use browser-based testing. By default, the builtin testing
support in Django is based on unittest. The pytest-django plugin'® allows you
to use pytest instead of unittest to gain all the benefits of pytest. The plugin
also includes helper functions and fixtures to speed up test implementation.

pytest-flask: Test Flask Applications

Flask is another popular framework that is sometimes referred to as a
microframework. The pytest-flask plugin'® provides a handful of fixtures to assist
in testing Flask applications.

18. https://pypi.python.org/pypi/pytest-django

https://pypi.python.org/pypi/pytest-django
https://pypi.python.org/pypi/pytest-flask
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

APPENDIX 4

Packaging and Distributing Python Projects

The idea of packaging and distribution seems so serious. Most of Python has
a rather informal feeling about it, and now suddenly, we're talking “packaging
and distribution.” However, sharing code is part of working with Python.
Therefore, it's important to learn to share code properly with the builtin Python
tools. And while the topic is bigger than what I cover here, it needn’t be
intimidating. All I'm talking about is how to share code in a way that is more
traceable and consistent than emailing zipped directories of modules.

This appendix is intended to give you a comfortable understanding of how to
set up a project so that it is installable with pip, how to create a source distri-
bution, and how to create a wheel. This is enough for you to be able to share
your code locally with a small team. To share it further through PyPI, I'll refer
you to some other resources. Let’s see how it’s done.

Creating an Installable Module

We'll start by learning how to make a small project installable with pip. For a
simple one-module project, the minimal configuration is small. I don’t recom-
mend you make it quite this small, but [want to show a minimal structure
in order to build up to something more maintainable, and also to show how
simple setup.py can be. Here’s a simple directory structure:

some_module proj/

— setup.py

L— some_module.py

The code we want to share is in some_module.py:

appendices/packaging/some_module_proj/some_module.py
def some func():
return 42

http://media.pragprog.com/titles/bopytest/code/appendices/packaging/some_module_proj/some_module.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Appendix 4. Packaging and Distributing Python Projects ® 176

To make it installable with pip, we need a setup.py file. This is about as bare
bones as you can get:

appendices/packaging/some_module_proj/setup.py
from setuptools import setup

setup (

name='some module',

py modules=['some module']
)

One directory with one module and a setup.py file is enough to make it instal-
lable via pip:

$ cd /path/to/code/appendices/packaging
$ pip install ./some_module_proj
Processing ./some_module proj
Installing collected packages: some-module
Running setup.py install for some-module ... done
Successfully installed some-module-0.0.0

And we can now use some_module from Python (or from a test):

$ python

Python 3.6.1 (v3.6.1:69c0db5050, Mar 21 2017, 01:21:04)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>> from some_module import some_func

>>> some_func()

42

>>> exit()

That’s a minimal setup, but it’s not realistic. If you're sharing code, odds are
you are sharing a package. The next section builds on this to write a setup.py
file for a package.

Creating an Installable Package

Let’s make this code a package by adding an _init_.py and putting the _init_.py
file and module in a directory with a package name:

$ tree some_package_proj/
some_package proj/

t:: setup.py
src

L— some_package

F— _init__.py

L— some module.py

http://media.pragprog.com/titles/bopytest/code/appendices/packaging/some_module_proj/setup.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Creating an Installable Package ® 177

The content of some_module.py doesn’t change. The _init_.py needs to be written
to expose the module functionality to the outside world through the package
namespace. There are lots of choices for this. I recommend skimming the two
sections of the Python documentation' that cover this topic.

If we do something like this in _init_.py:
import some package.some module

the client code will have to specify some_module:

import some package
some_package.some _module.some_func()

However, I'm thinking that some_module.py is really our API for the package,
and we want everything in it to be exposed to the package level. Therefore,
we’ll use this form:

appendices/packaging/some_package_proj/src/some_package/__init__.py
from some package.some module import *

Now the client code can do this instead:

import some package
some_package.some func()

We also have to change the setup.py file, but not much:

appendices/packaging/some_package_proj/setup.py
from setuptools import setup, find packages

setup(
name='some package',
packages=find packages(where='src'),
package dir={'': 'src'},

)
Instead of using py modules, we specify packages.
This is now installable:

$ cd /path/to/code/appendices/packaging
$ pip install ./some_package_proj/
Processing ./some package proj
Installing collected packages: some-package
Running setup.py install for some-package ... done
Successfully installed some-package-0.0.0

1. https://docs.python.org/3/tutorial/modules.html#packages

http://media.pragprog.com/titles/bopytest/code/appendices/packaging/some_package_proj/src/some_package/__init__.py
http://media.pragprog.com/titles/bopytest/code/appendices/packaging/some_package_proj/setup.py
https://docs.python.org/3/tutorial/modules.html#packages
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Appendix 4. Packaging and Distributing Python Projects ® 178

and usable:

$ python

Python 3.6.1 (v3.6.1:69c0db5050, Mar 21 2017, 01:21:04)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>> from some_package import some_func

>>> some_func()

42

Our project is now installable and in a structure that’s easy to build on. You
can add a tests directory at the same level of src to add our tests if you want.
However, the setup.py file is still missing some metadata needed to create a
proper source distribution or wheel. It's just a little bit more work to make
that possible.

Creating a Source Distribution and Wheel

For personal use, the configuration shown in the previous section is enough
to create a source distribution and a wheel. Let’s try it:
$ cd /path/to/code/appendices/packaging/some_package_proj/

$ python setup.py sdist bdist_wheel
running sdist

warning: sdist: standard file not found:
should have one of README, README.rst, README.txt

running check
warning: check: missing required meta-data: url

warning: check: missing meta-data:
either (author and author_email)
or (maintainer and maintainer email) must be supplied

running bdist wheel
$ s dist
some_package-0.0.0-py3-none-any.whl some package-0.0.0.tar.gz

Well, with some warnings, a .whl and a .tar.gz file are created. Let’s get rid of
those warnings.

To do that, we need to:

¢ Add one of these files: README, README.rst, or README.txt.

e Add metadata for url.

¢ Add metadata for either (author and author email) or (maintainer and maintain-
er_email).

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Creating a Source Distribution and Wheel ¢ 179

Let’s also add:

¢ A version number
¢ A license
¢ A change log

It makes sense that you’d want these things. Including some kind of README
allows people to know how to use the package. The url, author, and author_email
(or maintainer) information makes sense to let users know who to contact if they
have issues or questions about the package. A license is important to let
people know how they can distribute, contribute, and reuse the package. And
if it’s not open source, say so in the license data. To choose a license for open

Those extra bits don’t add too much work. Here’s what I've come up with for
a minimal default.

The setup.py:

appendices/packaging/some_package_proj_v2/setup.py
from setuptools import setup, find packages

setup (
name='some package',
description="'Demonstrate packaging and distribution',

version='1.0",

author='Brian Okken',

author email='brian@pythontesting.net',
url="'https://pragprog.com/book/bopytest/python-testing-with-pytest',

packages=find packages(where='src'),
package dir={'': 'src'},

)

You should put the terms of the licensing in a LICENSE file. All of the code in
this book follows the following license:

appendices/packaging/some_package_proj_v2/LICENSE
Copyright (c) 2017 The Pragmatic Programmers, LLC

All rights reserved.
Copyrights apply to this source code.

You may use the source code in your own projects, however the source code
may not be used to create commercial training material, courses, books,
articles, and the like. We make no guarantees that this source code is fit
for any purpose.

https://choosealicense.com
http://media.pragprog.com/titles/bopytest/code/appendices/packaging/some_package_proj_v2/setup.py
http://media.pragprog.com/titles/bopytest/code/appendices/packaging/some_package_proj_v2/LICENSE
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Appendix 4. Packaging and Distributing Python Projects ® 180

Here’s the README.rst:

appendices/packaging/some_package_proj_v2/README.rst

some_package: Demonstrate packaging and distribution

““some_package " is the Python package to demostrate how easy it is
to create installable, maintainable, shareable packages and distributions.

It does contain one function, called " “some func()"®
. code-block

>>> import some package
>>> some_package.some func()
42

That's it, really.

The README.rst is formatted in reStructuredText.” I've done what many have
done before me: I copied a README.rst from an open source project, removed
everything I didn’t like, and changed everything else to reflect this project.

You can also use an ASCII-formatted README.txt or README, but I'm okay with
copy/paste/edit in this instance.

I recommend also adding a change log. Here’s the start of one:

appendices/packaging/some_package_proj_v2/CHANGELOG.rst
Changelog

log. All of the changes to tasks_proj over the course of this book have been logged
into a CHANGELOG: rst file.

Let’s see if this was enough to remove the warnings:

$ cd /path/to/code/appendices/packaging/some_package_proj_v2
$ python setup.py sdist bdist_wheel

running sdist

running build

2. http://docutils.sourceforge.net/rst.html

http://media.pragprog.com/titles/bopytest/code/appendices/packaging/some_package_proj_v2/README.rst
http://media.pragprog.com/titles/bopytest/code/appendices/packaging/some_package_proj_v2/CHANGELOG.rst
http://keepachangelog.com
http://docutils.sourceforge.net/rst.html
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Creating a Source Distribution and Wheel ¢ 181

running build py
creating build
creating build/lib
creating build/lib/some package
copying src/some package/ init .py
-> build/lib/some_package
copying src/some package/some _module.py
-> build/lib/some_package
installing to build/bdist.macosx-10.6-intel/wheel
running install
running install lib
creating build/bdist.macosx-10.6-intel
creating build/bdist.macosx-10.6-intel/wheel
creating build/bdist.macosx-10.6-intel/wheel/some package
copying build/1lib/some package/ init .py
-> build/bdist.macosx-10.6-intel/wheel/some_package
copying build/1lib/some package/some module.py
-> build/bdist.macosx-10.6-intel/wheel/some_package
running install egg info
Copying src/some package.egg-info to
build/bdist.macosx-10.6-intel/wheel/some package-1.0-py3.6.egg-info
running install scripts
creating build/bdist.macosx-10.6-intel/wheel/some package-1.0.dist-info/WHEEL

$ 1s dist
some_package-1.0-py3-none-any.whl some package-1.0.tar.gz

Yep. No warnings.

Now, we can put the .whl and/or .targz files in a local shared directory and pip
install to our heart’s content:

$ cd /path/to/code/appendices/packaging/some_package_proj_v2

$ mkdir ~/packages/

$ cp dist/some_package-1.0-py3-none-any.whl ~/packages

$ cp dist/some_package-1.0.tar.gz ~/packages

$ pip install --no-index --find-links=~/packages some_package

Collecting some package

Installing collected packages: some-package

Successfully installed some-package-1.0

$ pip install --no-index --find-links=./dist some_package==1.0

Requirement already satisfied: some package==1.0 in
/path/to/venv/lib/python3.6/site-packages

$

Now you can create your own stash of local project packages from your team,
including multiple versions of each, and install them almost as easily as
packages from PyPI.

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Appendix 4. Packaging and Distributing Python Projects ® 182

Creating a PyPIl-Installable Package

You need to add more metadata to your setup.py to get a package ready to
distribute on PyPI. You also need to use a tool such as Twine® to push pack-
ages to PyPI. (Twine is a collection of utilities to help make interacting with
PyPI easy and secure. It handles authentication over HTTPS to keep your PyPI
credentials secure, and handles the uploading of packages to PyPI.)

This is now beyond the scope of this book. However, for information about
how to start contributing through PyPI, take a look at the Python Packaging
User Guide® and the the PyPI° section of the Python documentation.

3. https://pypi.python.org/pypi/twine

https://pypi.python.org/pypi/twine
https://python-packaging-user-guide.readthedocs.io
https://docs.python.org/3/distutils/packageindex.html
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

APPENDIX 5

xUnit Fixtures

In addition to the fixture model described in Chapter 3, pytest Fixtures, on

for Java, cppUnit for C++, and so on.

Generally, xUnit frameworks use a flow of control that looks something
like this:

setup()
test function()
teardown()

This is repeated for every test that will run. pytest fixtures can do anything you
need this type of configuration for and more, but if you really want to have setup()
and teardown() functions, pytest allows that, too, with some limitations.

Syntax of xUnit Fixtures

xUnit fixtures include setup()/teardown() functions for module, function, class,
and method scope:

setup_module() /teardown_module()
These run at the beginning and end of a module of tests. They run once
each. The module parameter is optional.

setup_function() /teardown_function()
These run before and after top-level test functions that are not methods
of a test class. They run multiple times, once for every test function. The
function parameter is optional.

setup_class() /teardown _class()
These run before and after a class of tests. They run only once. The class
parameter is optional.

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Appendix 5. xUnit Fixtures ® 184

setup_method() /teardown_method()

These run before and after test methods that are part of a test class. They

run multiple times, once for every test method. The method parameter is
optional.

Here is an example of all the xUnit fixtures along with a few test functions:

appendices/xunit/test_xUnit_fixtures.py

def

def

def

def

def

def

setup _module(module):
print(f'\nsetup module() for {module. name }')

teardown module(module):
print(f'teardown module() for {module. name }')

setup function(function):
print(f'setup function() for {function. name }')

teardown function(function):
print(f'teardown function() for {function. name }')

test 1():
print('test 1()"')

test 2():
print('test 2()"')

class TestClass:

@classmethod
def setup class(cls):
print(f'setup class() for class {cls. name }')

@classmethod
def teardown class(cls):
print(f'teardown class() for {cls. name }')

def setup method(self, method):
print(f'setup method() for {method. name }')

def teardown method(self, method):
print(f'teardown method() for {method. name }')

def test 3(self):
print('test 3()"')

def test 4(self):
print('test 4()"')

Iused the parameters to the fixture functions to get the name of the module/func-
tion/class/method to pass to the print statement. You don’t have to use the
parameter names module, function, cls, and method, but that’s the convention.

http://media.pragprog.com/titles/bopytest/code/appendices/xunit/test_xUnit_fixtures.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Mixing pytest Fixtures and xUnit Fixtures ® 185

Here’s the test session to help visualize the control flow:

$ cd /path/to/code/appendices/xunit

$ pytest -s test_xUnit_fixtures.py
============ test session starts =============
plugins: mock-1.6.0, cov-2.5.1

collected 4 items

test xUnit fixtures.py

setup module() for test xUnit fixtures
setup function() for test 1

test 1()

.teardown function() for test 1

setup function() for test 2

test 2()

.teardown function() for test 2

setup class() for class TestClass
setup method() for test 3

test 3()

.teardown method() for test 3

setup method() for test 4

test 4()

.teardown method() for test 4

teardown class() for TestClass
teardown module() for test xUnit fixtures

========== 4 passed in 0.01 seconds ==========
Mixing pytest Fixtures and xUnit Fixtures

You can mix pytest fixtures and xUnit fixtures:

appendices/xunit/test_mixed_fixtures.py
import pytest

def setup module():
print('\nsetup module() - xUnit')

def teardown module():
print('teardown module() - xUnit')

def setup function():
print('setup function() - xUnit')

def teardown function():
print('teardown function() - xUnit\n')

http://media.pragprog.com/titles/bopytest/code/appendices/xunit/test_mixed_fixtures.py
http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Appendix 5. xUnit Fixtures ® 186

@pytest.fixture(scope='module')

def module fixture():
print('module fixture() setup - pytest')
yield
print('module fixture() teardown - pytest')

@pytest.fixture(scope='function')

def function_fixture():
print('function fixture() setup - pytest')
yield
print('function fixture() teardown - pytest')

def test 1(module fixture, function_fixture):
print('test 1()"')

def test 2(module_fixture, function_fixture):
print('test 2()"')

You can do it. But please don't. It gets confusing. Take a look at this:

$ cd /path/to/code/appendices/xunit

$ pytest -s test_mixed_fixtures.py
============ test session starts =============
plugins: mock-1.6.0, cov-2.5.1

collected 2 items

test mixed fixtures.py

setup module() - xUnit

setup function() - xUnit

module fixture() setup - pytest
function fixture() setup - pytest
test 1()

.function fixture() teardown - pytest
teardown function() - xUnit

setup function() - xUnit

function fixture() setup - pytest
test 2()

.function fixture() teardown - pytest
teardown function() - xUnit

module fixture() teardown - pytest
teardown module() - xUnit

In this example, I've also shown that the module, function, and method parameters
to the xUnit fixture functions are optional. I left them out of the function
definition, and it still runs fine.

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

Limitations of xUnit Fixtures ® 187

Limitations of xUnit Fixtures

Following are a few of the limitations of xUnit fixtures:

e xUnit fixtures don’t show up in -setup-show and -setup-plan. This might seem
like a small thing, but when you start writing a bunch of fixtures and
debugging them, you’ll love these flags.

e There are no session scope xUnit fixtures. The largest scope is module.

¢ Picking and choosing which fixtures a test needs is more difficult with
xUnit fixtures. If a test is in a class that has fixtures defined, the test will
use them, even if it doesn’t need to.

e Nesting is at most three levels: module, class, and method.

e The only way to optimize fixture usage is to create modules and classes
with common fixture requirements for all the tests in them.

¢ No parametrization is supported at the fixture level. You can still use
parametrized tests, but xUnit fixtures cannot be parametrized.

There are enough limitations of xUnit fixtures that I strongly encourage you
to forget you even saw this appendix and stick with normal pytest fixtures.

http://pragprog.com/titles/bopytest/errata/add
http://forums.pragprog.com/forums/bopytest

SYMBOLS
--instafail, 166

. (dot syntax), 1, 8
i syntax, 40

A
a (pdb module), 128
add(), example of parametrized
testing, 42-48
addopts, 114-115, 140
always print this, 85
and
combining markers, 32

running tests by name,
41

API (application programming
interface)
CLI interactions, xii
mocks, 133-139
types and functions, 30
approx(), 117
argparse, 133
args (pdb module), 128
_asdict(), 5
assert rewriting, 28-30
assert statements
assert rewriting, 28-30
exercise, 20
simplicity of, xii
using, 27-30
assert_called_once_with(), 137
attributes, setting and delet-
ing, 86, 88
author field, packaging and
distribution, 104, 178

author_email field, packaging
and distribution, 104, 178

autouse
initializing database for
Task Project, 34
parametrized testing of
Task Project, 43
using for fixtures, 61

B

base directory, 73

build-name-setter, 142

builtin fixtures, see fixtures,
builtin

C

C (class scope), 58

cache, 77-84

--cache-clear option, 77, 80

--cache-show option, 77, 80

caches
caching test sessions, 77—
84
installing from, 161
using multiple versions,
161

capsys, 84

--capture=fd option, 14
--capture=method option, 9, 13
--capture=no option, 85
--capture=sys option, 14
category (warning), 93
change logs, 24, 178, 180
CHANGELOG.rst file, 24, 180
chdir(path), 86, 89
check_duration(), 83, 93, 110

Index

cheese preference example,
85-89
class scope, 56, 72, 74, 183
classes
defined, 40
fixtures scope, 56, 72,
74, 183
naming, 7, 114, 119-120
parametrized testing, 46
specifying fixtures, 61
test discovery rules, 119
testing single, 40
xUnit fixtures, 183
CLI (command-line interface)
adding options with
pytest_addoption, 75
configuring, 115-120
interactions through API,
xii
mocks, 133-139
Click, 133-139
CliRunner, 137
cls object, 152
Cobertura, 147
code, for this book, xvi
code coverage, 129-132, 153
--collect-only option, 9-10
color displays, 1, 167
command-line interface,
see CLI (command-line in-
terface)
comments, 52, 56
configuration, 113-123
command-line options,
115-120
exercises, 122
files, 113

listing options, 19, 114
marking xfail tests as
failed, 38
minimum required ver-
sion, 117
options, 19, 77, 114
with pytest.ini, 113-120
with pytestconfig, 75-77
registering markers, 116
test discovery, 114, 117-
120
in test output, 7
testing multiple with tox,
139-142
conftest.py file
about, 113
additional configuration
options, 115
in file structure, 25
as plugin, 50
sharing fixtures with, 50
context manager, mocks, 136
continuous integration
HTML report plugin, 169-
171
installing plugins from
local directory, 97
with Jenkins, 142-148
Python advantages, xi
specifying test directories,
119

cookiecutter-pytest-plugin, 110
--count option, 164
--cov-report option, 130
--cov=src option, 130
coverage.py, 129-132, 153
current directory, 83

D
d (pdb module), 128
data
passing fixture data to
unittest functions, 152
test data with fixtures,
53-55
databases
initializing, 33
mocks, 135-139
parametrized fixtures,
67-69
running legacy unittest
tests, 149
setup, 51, 67
db_type parameter, 68
debugging
display options, 125

with pdb module, 125—
128, 153
stopping tests for, 12, 14
delattr(), 86

deleting
attributes, 86, 88
environment variables,
86-88
delitem(), 86
dictionaries
returning, 5
setting and deleting en-
tries, 86, 88
directories
avoiding filename colli-
sions, 113, 120
base, 73
cache, 80
changing current work-
ing, 86, 89
code coverage, 130
current, 83, 86, 89
dist, 109
distributing plugins from
shared, 109
exercises, 48
help options, 20
installing plugins locally,
97
Jenkins testing, 143-148
packages file structure,
24
packaging plugins, 102
prepending paths, 89
rootdir, 7
specifying, 4-5, 39, 48,
73, 119
temporary, 34, 51, 55—
61, 64, 71-75, 106
test discovery configura-
tion options, 114, 117-
120
test discovery rules, 119
in test output, 7
virtual environments, 156
dist directory, 109
distribution, 175-182
metadata, 104, 178
plugins, 109
resources, 102, 110, 182
setup.cfg file, 114
source, 109, 178-181
Django, 173
docstrings, 172

Index ® 190

doctest
configuration options,
114
doctest_namespace fixture,
89-92
doctest_namespace, 89-92
doctest_optionflags, 114
dot syntax, 1, 8
down (pdb module), 128
duration
exercises, 93, 110
measuring with cache, 80—
84
ordering test results by,
9,18
duration_cache, 80-84
--durations=N option, 9, 18

E
E (errors)
defined, 8
displays, 8, 29
emojis, 168-169
entry_points field, packaging
plugins, 104
environment variables
listing, 19
setting and deleting, 86—
88
environments, seevirtual en-
vironments
equivalent(), 43
errors, see also failing tests
defined, 8
displays, 8, 29, 166-171
emojis, 168-169
raising with monkeypatch
fixture, 86
testing for expected, 30
traceback as they hap-
pen, 166
Exceptioninfo, 31
as excinfo, 30
exercises
configuration, 122
files and directories, 48
fixtures, 69, 93
installation, 20, 48
Jenkins, 153
markers, 48
mocks, 153
pdb module, 153
plugins, 110, 122
tox, 153
virtual environments, 20

--exit first option
exercises, 153
timeouts, 166
using, 9, 12, 125
EXPRESSION option, 9-10
expressions, running tests
with, 9-10, 41

F

F (failures)
changing indicator plugin
example, 98-110
defined, 8
displays, 8
F (function scope), 53, 58
failing tests, see also xfail
tests
assert rewriting, 28-30
changing indicator plugin
example, 98-110
debugging with pdb mod-
ule, 125-128
defined, 8
disallowing xpass, 114,
120
displays, 1, 8, 29, 140,
166-171
emojis, 168-169
marking expected fail-
ures, 8, 37, 48
reporting failing line, 15
running first failed, 9,
14, 77-80
running last failed, 9,
14, 77-80, 82, 125,
153
stopping tests at, 9, 12,
125, 164
stopping with --maxfail, 9,
13
testing for expected excep-
tions, 30
timeouts, 166
tox, 140
traceback as they hap-
pen, 166
unittest tests and first fail-
ures, 153

fakes, see mocks
--ff option
with cache, 77-80
using, 9, 14
file descriptors, capture op-
tions, 14
filename (warning), 93
filename collisions, avoiding,
93, 113, 120

files
avoiding filename colli-
sions, 93, 113, 120
downloading multiple
with pip, 161
exercises, 48
file descriptors capture
options, 14
fixtures in individual, 50
help options, 20
naming conventions, 5,
7,81, 114, 120
packages file structure,
24
specifying, 4-5, 40, 48
specifying one, 7, 40, 48
specifying only one test,
8
test discovery rules, 114,
120
--find-links myplugins, 109
find-links=./some_plugins/, 97
-first-failed option
with cache, 77-80
using, 9, 14
fixture(), 49
fixtures, 49-70, see also fix-
tures, builtin
autouse, 34, 43, 61
changing scope, 59-61
configuration options,
114
defined, 25, 49
directories, 25
exercises, 69, 93
help options, 19
listing, 63
marking with, 61
mixing xUnit with pytest,
185
multiple, 55
names, 49, 63-64
parametrized, 64-69,
153, 187
passing data to unittest
functions, 152
as plugins, 95
renaming, 63-64
scope, 53, 56-61, 69, 72,
151
session scope, 151
setup and teardown with,
51-53, 58
sharing with conftest.py
file, 50
specifying with usefixtures,
61
as term, 50

Index ® 191

for test data, 53-55

testdir, 105-108

testing plugins, 105-108

tracing execution with
--setup-show, 52, 58, 69,
187

xUnit, 183-187

-fixtures option, 63

fixtures, builtin, 71-93
advantages, 71
cache, 77-84
capsys, 84
doctest_namespace, 89-92
exercises, 93
monkeypatch, 85-89
options, 76
pytestconfig, 75-77
recwarn, 92
request, 65, 68, 81, 152
scope, 72
tmpdir, 34, 51, 55-61, 64,
71-75
tmpdir_factory, 51, 55-61,
64, 71-75
flake8, 172
Flask, 173
floating point numbers, 117
fnmatch_lines, 106
--foo <value> option, 75
function scope
cache, 82
display, 53
fixtures, 53, 56, 72
tmpdir, 72
xUnit fixtures, 183
functional tests
defined, xiii
directories, 24
functions, 23-48, see also fix-
tures; hook functions
API calls and types, 30
assert statements, 27-30
importing, 25
marking, 31-38
names, 7, 114, 120
parametrized testing, 42—
48
resources, 98
test discovery rules, 114,
120
testing for expected excep-
tions, 30
testing single, 40
xUnit fixtures, 183

G

getoption(), 122
GitHub, 82, 96-97
.gitignore file, 156

H
-h, using, 19

headers, test, 100

--help
ini file options, 114
listing options with, 9
using, 19
virtual environments, 157
hook functions
adding to plugins, 169
defined, 25
directories, 25
as plugins, 95
pytest_addoption, 75, 122
pytest_report_header(), 100
pytest_report_teststatus(), 100
resources, 98, 101
HTML
code coverage reports,
130
report plugin, 169-171
HTTPS, 182

I
id field
checking, 43
exercises, 48
generating identifiers, 66
optional, 45
parametrized fixtures, 66
parametrized testing, 43,
45, 47
importing
docstring failures, 90-92
functions, 25
packages, 25-27
ini files and configuration, 7,
25, 113-123
init.py files
about, 25, 113
avoiding filename colli-
sions, 120
creating installable pack-
ages, 176
--instafail option, 166
installing
from cache, 161
coverage.py, 129
exercises, 20, 48
Jenkins plugins, 143
MongoDB, 69, 126

packages locally, 25-27,
97

plugins and packages,
25-27, 96-97, 108-
109, 159-161

pytest, 3, 20

from .tar.gz and .whl files,
96, 161

tox, 141

virtual environments, 155

integration tests, defined, xiii

J

Jenkins CI, 142-148, 153
--junit-prefix option, 145
--junit-xml option, 145
junit_suite_name, 145

K
-k option, 9-10, 41
key names, 81

L
| (pdb module), 128
-l option (print statements),
9, 14, 16, 79, 115, 125
lambda expression, 88
--last-failed option
with cache, 77-80
measuring duration with
cache, 82
using, 9, 14, 125, 153
--If option
with cache, 77-80
measuring duration with
cache, 82
using, 9, 14, 125, 153
license field, packaging and
distribution, 104, 178
LICENSE file, 24, 104, 178
licenses, 24, 104, 178
lineno (warning), 93
list (pdb module), 128
list begin, end (pdb module), 128
local variables
printing output, 9, 14,
16, 79, 115, 125
tox, 140

M

M (module scope), 58

-m option, using, 9, 11, 32
MagicMock, 137

maintainer field, packaging and
distribution, 104, 178

Index ® 192

maintainer_email field, packaging
and distribution, 104, 178

makepyfile(), 106
MANIFEST.in file, 24

markers
configuration options,
114-115
exercises, 48
expected failures, 8, 37,
48
with fixtures, 61
functions, 31-38
help options, 19
multiple, 12, 32
names, 11
registering, 116
skipping tests with, 8,
34-37, 48
--strict option, 115, 140
timeouts, 165
tox, 140
unittest tests, 152
using, 9, 11
--markers list, 116
markers option, 114, 140
MARKEXPR option, using, 9, 11
math example of doctest_names-
pace, 89-92
--maxfail option, 9, 13
members, accessing by name,
5
message (warning), 93
metadata
HTML report plugin, 169
packaging and distribu-
tion, 104, 178
method scope, 183
methods, see also fixtures
method scope, 183
names, 7, 114, 120
parametrized testing, 46
test discovery rules, 114,
120
testing single, 41
xUnit fixtures, 183
minversion, 114, 117
mocker, 136
mocks, 133-139, 153
module scope, 56, 72, 74, 183
modules
creating installable, 175-
176
doctest_namespace fixture,
89-92

fixtures scope, 56, 72,
74, 183
packaging plugins, 104,
178
prepending paths, 89
specifying one, 40
test discovery rules, 119
xUnit fixtures, 183
MongoDB, 67-69, 126
monkeypatch, 85-89
--myopt option, 75

N
-n auto, 165
-n numprocesses, 165
name parameter, 63
namedtuple(), 3
names
accessing members by, 5
avoiding filename colli-
sions, 113, 120
doctest_namespace fixture,
89-92
files, 5, 7, 81, 114, 120
fixtures, 49, 63-64
functions, 7, 114, 120
key, 81
markers, 11
methods, 7, 114, 120
naming conventions, 5,
7,81, 119-120
renaming fixtures, 63-64
running tests by, 41
test discovery rules, 119
new._defaults_, 5

nice status indicators plugin
example, 98-110

--no-index option (pip), 97, 109
nodeid, 81

nodes, 44

norecursedirs, 114, 118

normal print, usually captured, 85

not
combining markers, 32
running tests by name,
41

NUM, 73

(@)

0O (opportunity), changing indi-
cator plugin example, 98-
110

ObjectID, 127

or
combining markers, 32
running tests by name,

41

output
with capsys, 84
options, 1, 8-9, 13, 85,
115, 117, 125
plugins for enhancing,
166-171
understanding, 1, 7-8

P
packages
doctest_namespace fixture,
89-92
file structure, 24
importing functions, 25
installing, 25-27, 97,
139, 159-161
installing locally, 25-27,
97, 160
installing with tox, 139
listing, 160
namespace, 177
packaging tips, 102-105,
175-182
resources, 110, 182
setup.cfg file, 114
specifying versions, 160
from .tar.gz and .whl files,
96, 161
uninstalling, 160
parallel tests, 164
param(), 47
parameters
monkeypatch fixture, 86
testing for expected excep-
tions, 30
parametrize(), 43-48
parametrized fixtures, 64-69,
153, 187
parametrized testing, 42-48,
187
passing tests, see also xpass
tests
defined, 8
displays, 1, 8, 168-169
dot syntax, 1, 8
emojis, 168-169
paths
configuration options,
114
prepending, 86, 89
--pdb command, 125, 127
pdb module, 125-128, 153

Index ® 193

PEP 257, 172
PEP 8, 172
pep8 command-line tool, 172
--pep8 option, 172
pip
about, xv, 159-161
distributing plugins from,
109
downloading multiple
files, 161
ignoring PyPI option, 97,
109
installing MongoDB, 126
installing Task Project,
26
installing plugins, 96-97
installing pytest, 4
packaging and distribu-
tion, 109, 175-182
resources, 161
tox and, 139
uninstalling with, 160
versions, 159

platform darwin, 7

pluggy, 7
plugins, 95-111
changing test flow, 163—
166
configuration options,
115
conftest.py as, 50
creating, 98-110
directories, 102
exercises, 110, 122
help options, 19
hook functions, adding

to, 169

installing, 96-97, 108-
109, 159-161

installing from Git reposi-
tory, 97

installing from local direc-
tory, 97

installing multiple ver-
sions, 97

installing specific ver-
sions, 96

Jenkins, 142

listing, 160

output enhancing, 166-
171

packaging and distribu-
tion, 102-105, 109,
175-182

resources, 95-96

static analysis, 171

suggested, 163-173

testing, 101, 105-108,
122
testing manually, 101,
106, 122
uninstalling, 108, 160
versions, 96-97, 104
web development plugins,
172
pp expr (pdb module), 128
prepend parameter, 86
pretty printing, pdb module,
128
print expr (pdb module), 128
print statements
with capsys, 84
disabling, 85
fixtures exercise, 69
options, 9, 13, 16, 79,
115, 125
pdb options, 128
progress bar, 167
py. 7
pycodestyle command-line tool,
172
pydocstyle, 172
pymongo, 126
PyPI, see Python Package In-
dex (PyPI)
pytest, see also configuration;
fixtures; functions; plugins
advantages, xi, 1-2
basics, 1-21
installing, 3, 20
minimum required ver-
sion, 114, 117
options, 9-20
resources, 3, 98
running, 4-9
versions, xii, 7, 9, 19,
114, 117
pytest config object, 75-77
pytest-cov, 96, 129-132
pytest-django, 173
pytest-emojis, 168-169
pytest-flake8, 172
pytest-flask, 173
pytest-html, 169-171
pytest-instafail, 166
pytest-mock, 133-139
pytest-nice, 98-110
pytest-pep8, 172
pytest-pycodestyle, 172
pytest-repeat, 163

pytest-selenium, 172
pytest-sugar, 167
pytest-timeout, 165
pytest-xdist, 164

pytest.ini file, 25, 113-123
pytestll, 104
pytest_addoption, 75, 122
pytest_report_header(), 100
pytest_report_teststatus(), 100
pytestconfig, 75-77
pytester, 105-108, 122

Python
about, xi
PEP 8, 172
resources, 102, 110, 128
versions, xii, 4, 7, 133,
159

Python Package Index (PyPI)
credentials, 182
distribution on, 110, 182
exercises, 110
ignoring, 97, 109
installing pytest, 3
plugins from, 96, 165
resources, 182

Python Packaging Authority,
157, 161

Python Packaging User
Guide, 110, 182

python_classes, 114, 119-120
python_files, 114, 120
python_functions, 114, 120

Q

q (pdb module), 128
-g option, 9, 15

--quiet option, 9, 15
quit (pdb module), 128

quotes, parametrized testing,
44, 46

R

raising parameter, 86
random, 81

readability, xii, 45
README files, 24, 104, 178

recursion, configuration op-
tions, 114, 117-120

recwarn, 92

registering markers, 116
repeating tests plugin, 163
_replace(), 5

Index ® 194

reports
code coverage, 130
HTML report plugin, 169—
171
Jenkins Test Results An-
alyzer, 142

request, 65, 68, 81, 152
requirements.txt file, 161

resources
for this book, xvi, 154
code coverage, 132
docstrings, 172
functions, 98, 101
hook functions, 98, 101
Jenkins, 147
mocks, 137, 139
packaging and distribu-

tion, 102, 110, 177,

182

packaging namespace,
177

pdb module, 128

pip, 161

plugins, 95-96

pytest, 3, 98

pytest-xdist, 165
pytester, 122
Python, 102, 110, 128
tox, 142
virtual environments, 157
ret, 106
rootdir, 7
-rs option, 37
-rsxX option, 115, 117, 140

S

S (session scope), 53, 58
s (skipped tests)
defined, 8
displays, 8, 36
-s option (print statements),
9, 13, 85
scope
cache, 82
changing, 59-61
fixtures, 53, 56-61, 69,
72, 151, 183
tmpdir, 59, 72
tmpdir_factory, 59, 72, 74
xUnit fixtures, 183, 187
scope parameter, 56
screenshots, HTML report
plugin, 169
sdist, 109
Selenium, 172

session, see also session
scope
cache fixture, 77-84
duration, 8, 80-84, 110
HTML report plugin, 169-
171
repeating tests in, 163
in test output, 7

session scope
cache, 83
changing, 59-61
display, 53, 58
fixtures, 53, 56, 72
tmpdir_factory, 72
unittest tests, 151
xUnit fixtures, 187

setUp(), 152

setattr(), 86, 88
setenv(), 86, 88
setitem(), 86, 88

setting
attributes, 86, 88
environment variables,
86-88
setup, see also fixtures
and --durations=N option, 19
with fixtures, 51-53, 58
packaging and distribu-
tion, 24, 103, 109,
114, 176-182
passing ids with fixtures,
152
--setup-show option, 52, 58,
69, 187
with xUnit fixtures, 183-
187
setup() (xUnit fixture), 183-187

setup() file (packaging plugins),
103
--setup-plan option, 187
--setup-show option, 52, 58, 69,
187
setup.cfg, 114
setup.py file
distribution and setup.cfg
file, 114
installing local package,
160
in package file structure,
24
packaging and distribu-
tion, 103, 109, 114,
176-182
tox, 139

setup_class(), 183
setup_function(), 183

setup_method(), 184
setup_module(), 183
--showlocals option, 9, 14, 16,
79, 125
skip(), 8, 34-36
skipif(), 8, 34, 36
skipping tests
defined, 8
displays, 8, 140
emojis, 168-169
exercises, 48
with markers, 8, 34-37,
48
tox, 140
smoke tests, 31-34
source distribution, 109, 178-
181
speed
exercise, 93
measuring duration with
cache, 80-84
ordering tests by dura-
tion, 9, 18
parallel tests, 164
spies, see mocks
src/ directory, 25
stack trace, see traceback
static analysis tools, 171
stderr
with capsys, 84
options, 9, 13, 85
stdout
with capsys, 84
options, 9, 13, 85
testing plugins, 106
stopping
tests with --maxfail, 9, 13
tests with -x and --exit first,
9,12, 125
tests with pytest-repeat, 164
--strict option, 115, 140
strings
parametrized testing, 44
testing plugins, 106
stubs, see mocks
subcutaneous tests, defined,
xiii
sugar plugin, 167
syspath_prepend(path), 86, 89
system tests, defined, xiii

T
t_after local variable, 17
t_before local variable, 17

Index ® 195

t_expected local variable, 17

tar balls
distribution from, 109,
178-181
installing plugins and
packages from, 96

tar.gz
distribution from, 109,
178-181
installing plugins and
packages from, 96

tasks
installing, 25-27
sample session, xii
Tasks project

about, xii

assert statements, 27-30

builtin fixtures for, 71-93

changing scope, 59-61

changing status indica-
tors plugin example,
98-110

code coverage, 129-132,
153

configuration, 113-123

creating objects, 5

debugging with pdb mod-
ule, 125-128

functions, 31-38

installing locally, 25-27

with Jenkins CI, 142-148

legacy testing, 148-153

marking expected fail-
ures, 37

mocks, 133-139

parametrized fixtures,
64-69

parametrized testing, 42—
48

plugins, creating, 98-110

plugins, using, 95-97,
163

renaming fixtures, 63-64

running subsets of tests,
38-42

setup and teardown with
fixtures, 51-53, 58

setup options, 9-20

skipping tests, 34-37

smoke tests, 31-34

source code, xvi

structure, 3, 24

test data with fixtures,
53-55

test discovery configura-
tion options, 118

testing for expected excep-
tions, 30

testing multiple configura-
tions with tox, 139-142
timer for, 61
--tb=auto option, 18
--tb=line option, 15, 17
--tb=long option, 18
--tb=native option, 18
-tb=no option, 12, 17
-tb=short option, 17, 115, 117,
140
-tb=style option, 9, 17, 125,
140
teardown, see also fixtures
and --durations=N option, 19
with fixtures, 51-53, 58
with xUnit fixtures, 183-
187
teardown() (xUnit fixture), 183-
187
teardown_class(), 183
teardown_function(), 183
teardown_method(), 184
teardown_module(), 183
test classes, see classes
test discovery
configuration options,
114, 117-120
file structure, 25
naming conventions, 5, 7
rules, 119-120
test doubles, see mocks
test files, see files
test functions, see functions
test headers, 100
test methods, see methods
Test Results Analyzer, 142
test scope, 72
test_defaults(), 5
test failing(), order and -first-failed
option, 15
test_member_access(), 5
testdir, 105-108
testdir.runpytest(), 106
testing
code coverage, 129-132,
153
legacy, 148-153
parallel tests, 164
parametrized, 42-48, 187
repeating tests per ses-
sion, 163
running subsets of tests,
38-42

smoke tests, 31-34

specifying files and direc-
tories, 4-5, 7-8, 10,
39-40

specifying only one test,
8

terms, xiii
testpaths, 114, 118
tests/ directory, 25
timeouts, 165
TinyDB, 51, 67
tmpdir
defined, 64
initializing database for
Task Project, 34
scope, 56-61, 72
using, 51, 55, 71-75
tmpdir_factory, 51, 55-61, 64,
71-75
tox
configuration, 113
exercises, 153
installing, 141
installing plugins from
local directory, 97
Jenkins with, 147
resources, 142
specifying test directories,
119
testing multiple configura-
tions with, 139-142
tox.ini, 113, 139
traceback
color and progress bar,
167
displaying as failures
happen, 166
emojis plugin, 168-169
fixtures, 53
navigating in pdb module,
128
options, 9, 12, 15, 17-
18, 115, 117, 125
tox, 140
turning off, 12, 17
Twine, 182
types
API calls and functions,
30
database, 68
parametrized testing, 44

u
u (pdb module), 128

Ubuntu and issues with venv,
155

Index ® 196

uninstall something, 160

uninstalling
packages, 160
plugins, 108, 160
unit tests
defined, xiii
directories, 24
unittest
Django support, 173
mocks, 133-139
running legacy tests,
148-153
up (pdb module), 128

url field, packaging and distri-
bution, 104, 178

usefixtures, 61, 114
Vv

-v option
changing indicator plugin
example, 101
checking for right tests,
11
marking functions, 32
parametrized tests and
fixtures, 68
running specific directo-
ries, classes, and tests,
39, 41
skipping tests, 36
using, 1, 8-9, 15, 125
xfail tests, 38
venv, 4, 20, 155
--verbose option
changing indicator plugin
example, 101
checking for right tests,
11
marking functions, 32
parametrized tests and
fixtures, 68
running specific directo-
ries, classes, and tests,
39, 41
skipping tests, 36
using, 1, 8-9, 15, 125
xfail tests, 38
--version option, 9, 19
version field, packaging and
distribution, 104, 178
versions
checking, 160
downloading multiple
with pip, 161
minimum pytest, 114,
117
mock package, 133

pip, 159

plugins, 96-97, 104

pytest, xii, 7, 9, 19, 114,
117

Python, xii, 4, 7, 133,
159

specifying package, 160

in test output, 7

using multiple, 139-142,
159, 161

--version option, 9, 19

virtualenv, 155

virtual environments
advantages, 155
exercises, 20
installing, 155
installing plugins from
local directory, 97
installing pytest, 4
installing tox, 141
Jenkins, 143-148
multiple, 139-142, 147,
161
pip and, 159
resources, 157
using, 155-157, 161
using multiple versions,
161
--version option, 9, 19
virtualenv
exercises, 20
installing pytest, 4
using, 155-157
versions, 155

w
warnings
with recwarn, 92
with warns(), 93
warns(), 93

web browser plugins, 172

web development plugins,
172
wheels
distributing from, 178-
181
installing plugins and
packages from, 96, 161
whi
distributing from, 178-
181
installing plugins and
packages from, 96, 161
Windows
installing pytest, 4
platform in test output, 7
virtual environment set-
up, 156

X

x (xfail)
defined, 8
displays, 8

X (xpass)
defined, 8
displays, 8

Index ® 197

X (—exit first) option
exercises, 153
timeouts, 166
using, 9, 12, 125

xUnit fixtures, 183-187

xdist plugin, 164

xfail tests
defined, 8
displays, 8, 140, 168-169
emojis, 168-169
exercises, 48
marking, 37
strict, 114, 120
tox, 140

xfail(), 8, 37

xfail_strict, 114, 120

XML, Jenkins, 142, 145

xpass tests
defined, 8
disallowing, 114, 120
displays, 8, 140, 168-169
emojis, 168-169

tox, 140
Y
yield, 34, 51
Z

zip files, installing plugins
and packages from, 96,
108, 161

Level Up

From data structures to architecture and design, we have what you need.

A Common-Sense Guide to Data Structures and Algorithms

If you last saw algorithms in a university course or at
a job interview, you're missing out on what they can
do for your code. Learn different sorting and searching
techniques, and when to use each. Find out how to
use recursion effectively. Discover structures for spe-
cialized applications, such as trees and graphs. Use
Big O notation to decide which algorithms are best for
your production environment. Beginners will learn how
to use these techniques from the start, and experienced
developers will rediscover approaches they may have
forgotten.

Jay Wengrow
(218 pages) ISBN: 9781680502442. $45.95
https://pragprog.com/book/jwdsal

Design It!

Don't engineer by coincidence—design it like you mean
it! Grounded by fundamentals and filled with practical
design methods, this is the perfect introduction to
software architecture for programmers who are ready
to grow their design skills. Ask the right stakeholders
the right questions, explore design options, share your
design decisions, and facilitate collaborative workshops
that are fast, effective, and fun. Become a better pro-
grammer, leader, and designer. Use your new skills to
lead your team in implementing software with the right
capabilities—and develop awesome software!

Michael Keeling
(350 pages) ISBN: 9781680502091. $42.50
https://pragprog.com/book/mkdsa

A Common-Sense Guide to
Data Structures and Algorithms

Level Up Your Core
Programming Skills

Jay Wengrow
edited by Brian MacDonald

The.
Dgrammers

Design It!

From Programmer
to Software Architect

\

||

Michael Keelin

Foreword by George Fairbanks
Edited by Susannah Davidson Pfalzer

https://pragprog.com/book/jwdsal
https://pragprog.com/book/mkdsa

More on Python

For data science and basic science, for you and anyone else on your team.

Data Science Essentials in Python

Go from messy, unstructured artifacts stored in SQL
and NoSQL databases to a neat, well-organized dataset
with this quick reference for the busy data scientist.
Understand text mining, machine learning, and net-
work analysis; process numeric data with the NumPy
and Pandas modules; describe and analyze data using
statistical and network-theoretical methods; and see
actual examples of data analysis at work. This one-
stop solution covers the essential data science you
need in Python.

Dmitry Zinoviev
(224 pages) ISBN: 9781680501841. $29
https://pragprog.com/book/dzpyds

Practical Programming (2nd edition)

This book is for anyone who wants to understand
computer programming. You'll learn to program in a
language that’s used in millions of smartphones,
tablets, and PCs. You'll code along with the book,
writing programs to solve real-world problems as you
learn the fundamentals of programming using Python
3. You'll learn about design, algorithms, testing, and
debugging, and come away with all the tools you need
to produce quality code. In this second edition, we've
updated almost all the material, incorporating the
lessons we've learned over the past five years of
teaching Python to people new to programming.

Paul Gries, Jennifer Campbell, Jason Montojo
(400 pages) ISBN: 9781937785451. $38
https://pragprog.com/book/gwpy2

The
Pragmatic
‘ogrammers

Data Science
Essentials

in Python
Collect >

Organize >

Explore >

Predict >
Value

Dmitry Zinoviev
edtted by Katharine Dvorak

;The
c
e

Practical Programming

Second Edition An Introduction to

Computer Science
Using Python 3

Paul Gries
Jennifer Campbell
y Jason Montojo

/ Edtted by Lynn Beighley

https://pragprog.com/book/dzpyds
https://pragprog.com/book/gwpy2

Explore Testing

Explore the uncharted waters of exploratory testing and delve deeper into web testing.

Explore |t!

Uncover surprises, risks, and potentially serious bugs
with exploratory testing. Rather than designing all tests
in advance, explorers design and execute small, rapid
experiments, using what they learned from the last
little experiment to inform the next. Learn essential
skills of a master explorer, including how to analyze
software to discover key points of vulnerability, how
to design experiments on the fly, how to hone your
observation skills, and how to focus your efforts.

Elisabeth Hendrickson
(186 pages) ISBN: 9781937785024. $29
https://pragprog.com/book/ehxta

The Way of the Web Tester

This book is for everyone who needs to test the web.
As a tester, you'll automate your tests. As a developer,
you’ll build more robust solutions. And as a team,
you’'ll gain a vocabulary and a means to coordinate
how to write and organize automated tests for the web.
Follow the testing pyramid and level up your skills in
user interface testing, integration testing, and unit
testing. Your new skills will free you up to do other,
more important things while letting the computer do
the one thing it’s really good at: quickly running
thousands of repetitive tasks.

Jonathan Rasmusson
(256 pages) ISBN: 9781680501834. $29
https://pragprog.com/book/jrtest

Hltn

Explore It!
Reduce Risk and
Increase Confidence with
Exploratory Testing

Elisabeth Hendrickson
Edited by Jacquelyn Carter

The Way of the
Web Tester

A Beginner's Guide to
‘Automating Tests WY

Jonathan Rasmusson
edited by Susannah Pfalzer

https://pragprog.com/book/ehxta
https://pragprog.com/book/jrtest

Pragmatic Programming

We’ll show you how to be more pragmatic and effective, for new code and old.

Your Code as a Crime Scene

Jack the Ripper and legacy codebases have more in B
common than you’d think. Inspired by forensic psychol-
ogy methods, this book teaches you strategies to pre-

dict the future of your codebase, assess refactoring Your Code asa

. . . Crime Scene
direction, and understand how your team influences

. . . . s Use Forensic Techniques
the design. With its unique blend of forensic psychology o Arrest Defote, Bottienecks, and
. . . Bad Design in Your Programs
and code analysis, this book arms you with the lint 4 = 0 3 € loci 4++) resCs) = bufC4);
: . - J
strategies you need, no matter what programming blis 1" € Tag T WAL ¢

: G711 = checkRe %33,

language you use.

‘Michael Feathers

Adam Tornhill g?cg;§”§§§fgg§ B iz - 0
(218 pages) ISBN: 9781680500387. $36 L i 3 Stido + 1
https://pragprog.com/book/atcrime ¢ \ y) buflloe

The Nature of Software Development

The

You need to get value from your software project. You P gaoers

need it “free, now, and perfect.” We can’t get you there,

but we can help you get to “cheaper, sooner, and bet- The Nature
ter.” This book leads you from the desire for value down of Software
to the specific activities that help good Agile projects Development

deliver better software sooner, and at a lower cost.
Using simple sketches and a few words, the author

Keep It Simple,
Makelt Valuable,
Build It Piece by Piece

invites you to follow his path of learning and under-
standing from a half century of software development
and from his engagement with Agile methods from their
very beginning.

PLANNING
[EFLG AL S
ORGANIZING

GUIDING

Ron Jeffries
Ron Jeffries i by MchaelSuine

(176 pages) ISBN: 9781941222379. $24
https://pragprog.com/book/rjinsd

)

https://pragprog.com/book/atcrime
https://pragprog.com/book/rjnsd

Exercises and Teams

From exercises to make you a better programmer to techniques for creating better teams,
we've got you covered.

Exercises for Programmers

When you write software, you need to be at the top of
your game. Great programmers practice to keep their (\) \
skills sharp. Get sharp and stay sharp with more than

fifty practice exercises rooted in real-world scenarios. Exercises for

N
If you're a new programmer, these challenges will help § Prograrf ers
you learn what you need to break into the field, and if N I IR
you're a seasoned pro, you can use these exercises to Q/ 57 S i
learn that hot new language for your next gig. N \
\

Brian P. Hogan RN \
(118 pages) ISBN: 9781680501223. $24 \A "/\"h ‘// ;
https://pragprog.com/book/bhwb) N [\

Brian P. Hogan

N ted by Susannah Davidson Pfalzer
L
N

Y !

Creating Great Teams

People are happiest and most productive if they can
choose what they work on and who they work with.

Self-selecting teams give people that choice. Build well-
designed and efficient teams to get the most out of your Creating Great Teams
organization, with step-by-step instructions on how to

How Self-Selection

set up teams quickly and efficiently. You’'ll create a Lets People Excel

process that works for you, whether you need to form
teams from scratch, improve the design of existing
teams, or are on the verge of a big team re-shuffle.

Sandy Mamoli and David Mole <
(102 pages) ISBN: 9781680501285. $17 AN

Sandy Mamoli
https://pragprog.com/book/mmteams P

edited by Kathartne Dvoralk 1

https://pragprog.com/book/bhwb
https://pragprog.com/book/mmteams

The Joy of Mazes and Math

Rediscover the joy and fascinating weirdness of mazes and pure mathematics.

Mazes for Programmers

A book on mazes? Seriously?
Yes!

Not because you spend your day creating mazes, or
because you particularly like solving mazes.

But because it’s fun. Remember when programming
used to be fun? This book takes you back to those days
when you were starting to program, and you wanted
to make your code do things, draw things, and solve
puzzles. It’'s fun because it lets you explore and grow
your code, and reminds you how it feels to just think.

Sometimes it feels like you live your life in a maze of
twisty little passages, all alike. Now you can code your
way out.

Jamis Buck
(286 pages) ISBN: 9781680500554. $38
https://pragprog.com/book/jbmaze

Good Math

Mathematics is beautiful—and it can be fun and excit-
ing as well as practical. Good Math is your guide to
some of the most intriguing topics from two thousand
years of mathematics: from Egyptian fractions to Tur-
ing machines; from the real meaning of numbers to
proof trees, group symmetry, and mechanical compu-
tation. If you've ever wondered what lay beyond the
proofs you struggled to complete in high school geom-
etry, or what limits the capabilities of the computer on
your desk, this is the book for you.

Mark C. Chu-Carroll
(282 pages) ISBN: 9781937785338. $34
https://pragprog.com/book/mcmath

for Hogrémmers

Code Your Own
Twisty Little Passages

Jamis Buck
Edited by Jacquelin Carter

Good Math

A Geek's Guide Lo the Beauty of
Numbers, Logic. and Computation

%..‘ . ﬁ
.\s,/// \/
tz B:vy/”

Mark C. Chu-Carroll
Edited by John Osborn

https://pragprog.com/book/jbmaze
https://pragprog.com/book/mcmath

The Pragmatic Bookshelf

The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online

This Book’s Home Page
https://pragprog.com/book/bopytest
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
https://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community

https://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact with
our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book

If you liked this eBook, perhaps you’'d like to have a paper copy of the book. It’s available
for purchase at our store: https:/pragprog.com/book/bopytest

Contact Us

Online Orders: https://pragprog.com/catalog
Customer Service: support@pragprog.com
International Rights: translations@pragprog.com
Academic Use: academic@pragprog.com
Write for Us: http.//write-for-us.pragprog.com
Or Call: +1 800-699-7764

https://pragprog.com/book/bopytest
https://pragprog.com/updates
https://pragprog.com/community
https://pragprog.com/news
https://pragprog.com/book/bopytest
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Acknowledgments
	Preface
	What Is pytest?
	Learn pytest While Testing an Example Application
	How This Book Is Organized
	What You Need to Know
	Example Code and Online Resources

	1. Getting Started with pytest
	Getting pytest
	Running pytest
	Running Only One Test
	Using Options
	Exercises
	What’s Next

	2. Writing Test Functions
	Testing a Package
	Using assert Statements
	Expecting Exceptions
	Marking Test Functions
	Skipping Tests
	Marking Tests as Expecting to Fail
	Running a Subset of Tests
	Parametrized Testing
	Exercises
	What’s Next

	3. pytest Fixtures
	Sharing Fixtures Through conftest.py
	Using Fixtures for Setup and Teardown
	Tracing Fixture Execution with –setup-show
	Using Fixtures for Test Data
	Using Multiple Fixtures
	Specifying Fixture Scope
	Specifying Fixtures with usefixtures
	Using autouse for Fixtures That Always Get Used
	Renaming Fixtures
	Parametrizing Fixtures
	Exercises
	What’s Next

	4. Builtin Fixtures
	Using tmpdir and tmpdir_factory
	Using pytestconfig
	Using cache
	Using capsys
	Using monkeypatch
	Using doctest_namespace
	Using recwarn
	Exercises
	What’s Next

	5. Plugins
	Finding Plugins
	Installing Plugins
	Writing Your Own Plugins
	Creating an Installable Plugin
	Testing Plugins
	Creating a Distribution
	Exercises
	What’s Next

	6. Configuration
	Understanding pytest Configuration Files
	Changing the Default Command-Line Options
	Registering Markers to Avoid Marker Typos
	Requiring a Minimum pytest Version
	Stopping pytest from Looking in the Wrong Places
	Specifying Test Directory Locations
	Changing Test Discovery Rules
	Disallowing XPASS
	Avoiding Filename Collisions
	Exercises
	What’s Next

	7. Using pytest with Other Tools
	pdb: Debugging Test Failures
	Coverage.py: Determining How Much Code Is Tested
	mock: Swapping Out Part of the System
	tox: Testing Multiple Configurations
	Jenkins CI: Automating Your Automated Tests
	unittest: Running Legacy Tests with pytest
	Exercises
	What’s Next

	A1. Virtual Environments
	A2. pip
	A3. Plugin Sampler Pack
	Plugins That Change the Normal Test Run Flow
	Plugins That Alter or Enhance Output
	Plugins for Static Analysis
	Plugins for Web Development

	A4. Packaging and Distributing Python Projects
	Creating an Installable Module
	Creating an Installable Package
	Creating a Source Distribution and Wheel
	Creating a PyPI-Installable Package

	A5. xUnit Fixtures
	Syntax of xUnit Fixtures
	Mixing pytest Fixtures and xUnit Fixtures
	Limitations of xUnit Fixtures

	Index
	– SYMBOLS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– X –
	– Y –
	– Z –

